98%
921
2 minutes
20
The development of biomimetic highly-porous scaffolds is essential for successful tissue engineering. Electrospun nanofibers are highly versatile platforms for a broad range of applications in different research areas. In the biomedical field, micro/nanoscale fibrous structures have gained great interest for wound dressings, drug delivery systems, soft and hard-tissue engineering scaffolds, enzyme immobilization, among other healthcare applications. In this mini-review, electrospun gelatin-based scaffolds for a variety of tissue engineering applications, such as bone, cartilage, skin, nerve, and ocular and vascular tissue engineering, are reviewed and discussed. Gelatin blends with natural or synthetic polymers exhibit physicochemical, biomechanical, and biocompatibility properties very attractive for scaffolding. Current advances and challenges on this research field are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.09.044 | DOI Listing |
Sci Adv
September 2025
Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
Bioinspired network designs are widely exploited in biointegrated electronics and tissue engineering because of their high stretchability, imperfection insensitivity, high permeability, and biomimetic J-shaped stress-strain responses. However, the fabrication of three-dimensionally (3D) architected electronic devices with ordered constructions of network microstructures remains challenging. Here, we introduce the tensile buckling of stacked multilayer precursors as a unique route to 3D network materials with regularly distributed 3D microstructures.
View Article and Find Full Text PDFSci Adv
September 2025
School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.
View Article and Find Full Text PDFSci Transl Med
September 2025
Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia.
Skin scars remain a substantial clinical challenge because of their impact on appearance and psychological well-being. Lysyl oxidases catalyze collagen cross-linking, a key factor in scar development. Here, we report a randomized, double-blind, placebo-controlled phase 1 study to assess the safety and tolerability of PXS-6302, a topical pan-lysyl oxidase inhibitor, in treating mature scars (ACTRN12621001545853).
View Article and Find Full Text PDFTissue Eng Part B Rev
September 2025
Department of Pharmaceutics School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
The poor prognosis constitutes a significant difficulty for spinal cord injury (SCI) individuals. Although mesenchymal stem cells (MSCs) hold promises as advanced therapy medicinal products (ATMPs) for SCI patients, challenges such as Good Manufacturing Practice-compliant manufacturing, cellular senescence, and limited therapeutic efficacy continue to hinder their clinical translation. Recent advances have identified botanical nanovesicles (BNs) as potent bioactive mediators capable of "priming" MSCs to self-rejuvenate, augment paracrine effect, and establish inflammatory tolerance.
View Article and Find Full Text PDF