Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Many patients worldwide suffer from cardiovascular diseases for which an underlying factor is thrombosis. Devising a molecular imaging technique for early detection of thrombosis in a clinical setting is highly recommended. Because fibrin is a major constituent of clots and is present in all types of thrombi but absent in circulation, it is a highly specific and sensitive target for molecular imaging of thrombi. It is assumed that cyclization of peptides will improve the receptor binding affinity and stability of the peptide. In the present study, we have developed linear and cyclic fibrin-binding peptides for thrombus imaging and compared their biological properties.

Procedures: Linear HYNIC-GPRPP and cyclic HYNIC-CGPRPPC peptides were synthesized using a standard Fmoc strategy and radiolabeled with Tc-99m. The stability of the radiolabeled peptides in human plasma and their affinity for fibrin and blood clots were determined. Blood clearance and biodistribution were evaluated in rats and mice, respectively. The peptide with the highest affinity was injected to a live rabbit femoral thrombosis model, and scintigraphic images were obtained.

Results: In vitro studies show that peptides are stable in human plasma and have a high affinity for human fibrin. They also demonstrated fast blood clearance in rats and high thrombus uptake in the Balb/c mice femoral thrombosis model. Femoral thrombosis was visualized 30 min postinjection of cyclic peptide in a live rabbit model using single photon emission computed tomography (SPECT)/X-ray computed tomography.

Conclusions: The results indicate that the cyclic peptide is a promising agent for molecular imaging of fibrin using SPECT.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-016-1004-3DOI Listing

Publication Analysis

Top Keywords

molecular imaging
16
femoral thrombosis
12
human plasma
8
blood clearance
8
live rabbit
8
thrombosis model
8
cyclic peptide
8
thrombosis
6
cyclic
5
peptide
5

Similar Publications

Dynamic and precise electromagnetic levitation of single cells.

Proc Natl Acad Sci U S A

September 2025

Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.

The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.

View Article and Find Full Text PDF

For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".

View Article and Find Full Text PDF

A novel DNA repair-independent role for Gen nuclease in promoting unscheduled polyploidy cell proliferation.

PLoS Genet

September 2025

Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France.

Unscheduled whole genome duplication (WGD), also described as unscheduled or non-physiological polyploidy, can lead to genetic instability and is commonly observed in human cancers. WGD generates DNA damage due to scaling defects between replication factors and DNA content. As a result DNA damage repair mechanisms are thought to be critical for ensuring cell viability and proliferation under these conditions.

View Article and Find Full Text PDF

Cardiac adipose tissue is normally present in the epicardium, but a variable amount can also be present in the myocardium, particularly in the subepicardial regions of the right ventricular anterolateral and apical regions. Pathological adipose tissue changes may occur in both ischemic (previous myocardial infarction) and nonischemic (previous myocarditis, arrhythmogenic cardiomyopathy, lipomatous hypertrophy of the interatrial septum, cardiac lipomas and liposarcomas) conditions, with or without extensive replacement-type myocardial fibrosis. Cardiac magnetic resonance is the gold standard imaging technique to characterize myocardial tissue changes and to distinguish between physiological and pathological cardiac fat deposits.

View Article and Find Full Text PDF

Resistance arteries, which include small arteries and arterioles, play essential roles in regulating blood pressure and tissue perfusion. Dysfunction in these arteries can lead to various cardiovascular conditions such as hypertension, atherosclerosis, and heart failure, as well as neurovascular conditions. The examination of human resistance arteries is crucial for understanding cardiovascular disease mechanisms and developing targeted therapeutic strategies.

View Article and Find Full Text PDF