98%
921
2 minutes
20
A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038746 | PMC |
http://dx.doi.org/10.3390/s16091468 | DOI Listing |
Nature
September 2025
Natural History Sciences, IIL, Hokkaido University, Sapporo, Japan.
Carbonaceous asteroids are the source of the most primitive meteorites and represent leftover planetesimals that formed from ice and dust in the outer Solar System and may have delivered volatiles to the terrestrial planets. Understanding the aqueous activity of asteroids is key to deciphering their thermal, chemical and orbital evolution, with implications for the origin of water on the terrestrial planets. Analyses of the objects, in particular pristine samples returned from asteroid Ryugu, have provided detailed information on fluid-rock interactions within a few million years after parent-body formation.
View Article and Find Full Text PDFTrends Biotechnol
September 2025
Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747 AG, The Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK; Bezos Centre for Sustainable Protein, Imperial Colleg
The breach of six planetary boundaries highlights the need for sustainable food production. Aerobic hydrogen-oxidising bacteria (HOBs) convert atmospheric CO and green hydrogen (H) into biomass via gas fermentation, a process already used for food-grade single-cell protein production. This approach enables a supply chain independent of agriculture, requiring minimal land and water, with potential for carbon-neutral production and carbon capture.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070
Photocatalytic seawater splitting (PSWS), which utilizes abundant solar and ocean resources, is one of the most promising technologies for sustainable hydrogen production. However, the complex composition of seawater significantly limits the durability and activity of photocatalysts. In this review, we first identify the primary factors that contribute to photocatalyst deactivation during PSWS, including chloride induced corrosion and loss of active sites, and light shielding caused by precipitation of metal cation salts.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
Solar-driven interfacial evaporation technology represents an innovative and high-efficiency desalination approach. This technology plays a crucial role in relieving the shortage of worldwide freshwater resources. However, the interfacial evaporator still faces great challenges in terms of high efficiency and ensuring long-term evaporation stability, among other aspects.
View Article and Find Full Text PDF