Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application.

Mater Sci Eng C Mater Biol Appl

National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 200240 Shanghai, China.

Published: December 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zn-based alloys have been viewed as new potential materials for biodegradable implants, such as cardiovascular stents, mainly in consideration of their lower corrosion rate when compared with that of Mg alloys. In this study we developed a new Zinc-4wt.%Copper (Zn-4Cu) alloy as a biodegradable material. Hot extrusion was applied to Zn-4Cu to refine the microstructure and consequently improve its mechanical properties and corrosion resistance. After extrusion, dendritic CuZn5 phases were broken and distributed along the extrusion direction. The grains were refined obviously due to dynamical recrystallization. The yield strength (YS), ultimate tensile strength (UTS) and elongation of the as-extruded alloy are 250±10MPa, 270±10MPa and 51±2%, respectively. The corrosion rate of the as-extruded alloy in Hank's solution is about 9.41(±1.34)μmyear(-1). In vitro evaluation shows that Zn-4Cu presents acceptable toxicity to human endothelial cells, and could effectively inhibit bacteria adhesion and biofilm formation. The present study indicates that the as-extruded Zn-4Cu alloy exhibits excellent strength and ductility, uniform and slow degradation, good biocompatibility and significant antibacterial effect, which make it an excellent candidate material for biodegradable implants, especially for cardiovascular stents application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2016.06.082DOI Listing

Publication Analysis

Top Keywords

alloy biodegradable
8
biodegradable material
8
stents application
8
biodegradable implants
8
implants cardiovascular
8
cardiovascular stents
8
corrosion rate
8
zn-4cu alloy
8
as-extruded alloy
8
zn-cu alloy
4

Similar Publications

Laser Powder Bed Fusion (LPBF) WE43 Magnesium Scaffold with EGCG/PDA-Functionalized Silk Fibroin Membrane for Antibacterial Osteoinductive Guided Bone Regeneration.

ACS Appl Mater Interfaces

September 2025

Department of Pediatric Dentistry (Department of Preventive Dentistry), School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China.

Guided bone regeneration (GBR) is a prominent focus in biomedical materials research, yet few studies address practical clinical needs. GBR membranes must fulfill the "PASS" principles to be effective in surgery, but existing membranes often fall short in balancing antibacterial activity, controlled degradation, osteoinductive potential, and mechanical support. In this study, we employed laser powder bed fusion (LPBF) to fabricate a porous WE43 magnesium alloy scaffold suitable for large alveolar bone defects.

View Article and Find Full Text PDF

Background: Biodegradable magnesium-based implants present significant potential for maxillofacial applications, particularly in mandible fixation, due to their osteoconductive properties and elimination of secondary removal surgeries.

Objective: The present study aimed to assess the in vivo biocompatibility and degradation behavior of pure magnesium (Mg) and Mg-Zn-Ca alloy plates implanted in the mandibles of New Zealand rabbits, providing insights into their clinical viability.

Materials And Methods: Twenty-four male New Zealand White rabbits were divided into two groups and received titanium, pure Mg, and Mg-Zn-Ca alloy plates passively implanted into the mandibular bone surface.

View Article and Find Full Text PDF

The intricate degradation dynamics exhibited by biodegradable alloys significantly influence host responses during the implantation process, posing challenges in achieving stable osseointegration. It is thus critical to tailor the biodegradation profiles of these implants to establish a conductive tissue microenvironment for bone tissue regeneration. In this study, we demonstrate that Zn-Li alloy forms a layer of Li-containing degradation products at the bone-implant interface to accommodate the bone regeneration process.

View Article and Find Full Text PDF

High-resolution DIC analysis of in situ strain and crack propagation in coated AZ31 magnesium alloys under mechanical loading.

J Mater Sci

August 2025

Faculty of Science and Health, School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT UK.

Unlabelled: Biodegradable magnesium (Mg) alloys are promising for various biomedical applications but their susceptibility to corrosion poses significant challenges. This study systematically examines the microstructural integrity and failure mechanisms of electrochemically deposited phosphate- and fluorine-rich coatings on AZ31 Mg alloy subjected to three-point bending (3 PB) in both non-corrosive and physiological (HBSS) environments. High-resolution digital image correlation (HR-DIC) combined with scanning electron microscopy (SEM) enables in situ visualization and quantitative analysis of crack initiation, evolution, and propagation within the coatings.

View Article and Find Full Text PDF

Biodegradable zinc (Zn) alloys are promising biodegradable metals owing to their appropriate in vivo degradation rate. To address the problem of low mechanical properties of pure Zn, magnesium (Mg) is added into Zn to develop Zn-0.5Mg alloys which are rolled subsequently.

View Article and Find Full Text PDF