98%
921
2 minutes
20
Neural circuits formed during postnatal development have to be maintained stably thereafter, but their mechanisms remain largely unknown. Here we report that the metabotropic glutamate receptor subtype 1 (mGluR1) is essential for the maintenance of mature synaptic connectivity in the dorsal lateral geniculate nucleus (dLGN). In mGluR1 knockout (mGluR1-KO) mice, strengthening and elimination at retinogeniculate synapses occurred normally until around postnatal day 20 (P20). However, during the subsequent visual-experience-dependent maintenance phase, weak retinogeniculate synapses were newly recruited. These changes were similar to those of wild-type (WT) mice that underwent visual deprivation or inactivation of mGluR1 in the dLGN from P21. Importantly, visual deprivation was ineffective in mGluR1-KO mice, and the changes induced by visual deprivation in WT mice were rescued by pharmacological activation of mGluR1 in the dLGN. These results demonstrate that mGluR1 is crucial for the visual-experience-dependent maintenance of mature synaptic connectivity in the dLGN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2016.07.035 | DOI Listing |
Food Chem
August 2025
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing &
Lemon (Citrus limon), an important citrus fruit, suffers from slow postharvest ripening and rapid quality deterioration, including moisture loss and membrane lipid peroxidation. This study investigated the effects of ethylene (ETH) and methyl jasmonate (MeJA) co-treatment on ripening and quality maintenance of green-mature lemons. ETH + MeJA accelerated peel degreening, improved marketability, and simultaneously suppressed the ETH-induced high respiration rate and weight loss, preserving soluble solids, titratable acidity, and ascorbic acid.
View Article and Find Full Text PDFReprod Domest Anim
September 2025
Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia.
Extracellular Vesicles (EVs) are small, membrane-bound particles released by cells into biological fluids, where they function as mediators of intercellular communication. These vesicles transport a diverse array of bioactive molecules, including proteins, lipids, and nucleic acids, and play essential roles in regulating physiological and pathological processes. Recent research has revealed the significance of EVs in reproductive biology, particularly in the areas of spermatozoa maturation, oocyte development, embryo implantation, and maternal-fetal interactions.
View Article and Find Full Text PDFBioinform Adv
August 2025
School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China.
Motivation: Embryonic cells finally evolve into various types of mature cells, where cell fate determinations play pivotal roles, but dynamic features of this process remain elusive.
Results: We analyze four single-cell RNA sequencing datasets on mouse embryo cells, mouse embryonic fibroblasts, human bone marrow, and intestine organoid. We show that key (high expression) genes of each organism exhibit different statistical features and expression patterns before and after branch, e.
Commun Biol
September 2025
University of Münster, Institute of Integrative Cell Biology and Physiology, Münster, Germany.
The formation and maintenance of epithelia is critical for animal development and survival. Central to epithelial integrity are cadherin-based complexes called adherens junctions (AJs), which form physically robust but inherently dynamic cell-cell adhesions. How AJs function at the molecular level remains incompletely understood because techniques to study the central AJ proteins within the dynamic adhesion structure are scarce.
View Article and Find Full Text PDFNPJ Syst Biol Appl
September 2025
Pharmacometrics & Systems Pharmacology, Pfizer Research & Development, San Diego, CA, USA.
Elranatamab, an approved bispecific antibody (BsAb) for relapsed/refractory multiple myeloma, forms an immune synapse between the T-cell CD3 marker and B-cell maturation antigen (BCMA) on myeloma cells. Circulating soluble BCMA (sBCMA) is associated with disease burden and may reduce drug exposure, impacting efficacy. A quantitative systems pharmacology model that captures elranatamab's mechanism of action and disease dynamics was developed and calibrated to clinical datasets.
View Article and Find Full Text PDF