Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple sclerosis (MS) is generally acknowledged to be an autoimmune disease, but its etiology remains unknown. The most intensively studied animal model of MS is experimental autoimmune encephalomyelitis (EAE). Dendritic cells (DCs), the professional antigen presenting cells (APCs), have gained increasing attention because they connect innate and adaptive immunity. The aim of this study was to determine the role of mature DCs in the pathogenesis of EAE. It was found that the number of mature DCs in the EAE spleen increased compared to the control group (p < 0.05). And there was an imbalance between Th17 (effector) and Treg (regulatory) in EAE. The data showed that mature DCs can regulate the differentiation of Th17 and Treg in EAE. In addition, there was a significant difference in secretion of TGF-β1 and IL-6 between mature DCs from mice with EAE and controls. The present data suggest that mature DCs cause an imbalance between Th17 and Treg by secreting TGF-β1 and IL-6 in the pathogenesis of EAE disease. Thus, targeting DC may be an effective strategy for treating MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967648PMC
http://dx.doi.org/10.5114/ceji.2016.60987DOI Listing

Publication Analysis

Top Keywords

mature dcs
20
tgf-β1 il-6
12
dendritic cells
8
secreting tgf-β1
8
il-6 pathogenesis
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
pathogenesis eae
8
imbalance th17
8
data mature
8

Similar Publications

Zika virus (ZIKV) is a mosquito-borne flavivirus causing a major epidemic in the Americas in 2015. Dendritic cells (DCs) are leukocytes with key antiviral functions, but their role in ZIKV infection remains under investigation. While most studies have focused on the monocyte-derived subtype of DCs, less is known about conventional dendritic cells (cDCs), essential for the orchestration of antiviral adaptive immunity.

View Article and Find Full Text PDF

Kaempferol as a multifaceted immunomodulator: implications for inflammation, autoimmunity, and cancer.

Front Immunol

September 2025

Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.

Kaempferol (KMF) is a dietary flavonoid exhibiting profound immunomodulatory effects across multiple immune cell populations. This review synthesizes current insights into how KMF regulates diverse immune cell populations and its therapeutic potential in inflammatory and immune-related disorders. KMF exhibits multifaceted effects on T cells.

View Article and Find Full Text PDF

Background: Tertiary lymphoid structures (TLSs) are linked to prognosis in esophageal squamous cell carcinoma (ESCC), but whether the distribution, abundance, and maturity of TLSs affect therapeutic efficacy and prognosis in ESCC treated with neoadjuvant chemoradiotherapy plus immunotherapy (NRCI) remains unclear. We explored TLS characteristics and correlated them with patient survival.

Methods: A total of 157 resectable ESCC patients treated with neoadjuvant therapy between September 2020 and May 2023 were divided into NRCI (n=49) and neoadjuvant chemoimmunotherapy (NCI, n=108) groups.

View Article and Find Full Text PDF

Adenoid cystic carcinoma (ACC) is a lethal salivary gland malignant neoplasm. Lung metastasis is the primary cause of mortality in ACC patients while there is no effective treatment available at present. In this study, a precise and biomimetic nanoplatform, CG/MC/U-M, is designed to combine cuproptosis, gas therapy and immunotherapy against metastatic adenoid cystic carcinoma.

View Article and Find Full Text PDF

NO-Driven Janus Nanomotor Enhances T-Cell Infiltration by Reconstructing Tumor-Associated Blood and Lymphatic Vessels.

Adv Sci (Weinh)

September 2025

Department of Pharmaceutics, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), State Key Laboratory of Discovery and Utilization of Fun

The effectiveness of antitumor immunotherapy is limited to immune cell infiltration into solid tumors, primarily via T-cell migration through tumor blood vessels. This study introduces a multifunctional nitric oxide (NO)-driven hollow gold Janus nanomotor (HAM) designed to promote tumor blood vessel normalization and increase T-cell infiltration, thereby enhancing the immune response against tumors. It is revealed that self-generated NO facilitates the penetration of HAM into tumors and increases pericyte coverage of blood vessels, thereby enhancing intratumoral T-cell infiltration.

View Article and Find Full Text PDF