An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide.

Nanotechnology

Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China.

Published: September 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/38/384001DOI Listing

Publication Analysis

Top Keywords

ordered array
20
array hierarchical
8
surface-enhanced raman
8
raman scattering
8
ordered
6
hierarchical spheres
4
spheres surface-enhanced
4
detection
4
scattering detection
4
detection traces
4

Similar Publications

Introduction: This study explores high-impedance surface (HIS) metamaterial shields for enhancing the transmit field in whole-body MRI at 7 T. We studied the possibility of placing a metamaterial layer between the gradient coil and bore liner using electromagnetic simulations to evaluate B and SAR efficiency across different impedances.

Materials And Methods: Simulations were performed in three stages, first metamaterial design and characterization, then single-element dipole simulations with a homogenous phantom, and finally, simulations including a four-element arrays with a virtual body model, including the whole scanner geometry.

View Article and Find Full Text PDF

Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.

Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.

View Article and Find Full Text PDF

Probing non-equilibrium topological order on a quantum processor.

Nature

September 2025

TUM School of Natural Sciences, Physics Department, Technical University of Munich, Garching, Germany.

Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter-they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems, which are generically difficult to simulate classically because of their high entanglement. Here we realize a Floquet topologically ordered state theoretically proposed in ref.

View Article and Find Full Text PDF

Background: Electronic nicotine delivery systems (ENDS) utilize "E-liquids" in order to generate "E-vapor", an inhalable aerosolized mixture containing nicotine and flavors. Flavored ENDS are very popular among teens who vape, however, the possible cardiac electrophysiological harm of inhalation exposure to flavored ENDS are not fully understood.

Objective: To test if inhalation exposure to flavoring carbonyls in e-liquids compromises mitochondrial integrity, increases oxidative stress, and leads to cardiac electrophysiological toxicity.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are powerful vectors for the intracellular delivery of a diverse array of therapeutic molecules. Despite their potential, the rational design of CPPs remains a challenging task that often requires extensive experimental efforts and iterations. In this study, we introduce an innovative approach for the de novo design of CPPs, leveraging the strengths of machine learning (ML) and optimization algorithms.

View Article and Find Full Text PDF