Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We observe a deuteron beam polarization lifetime near 1000 s in the horizontal plane of a magnetic storage ring (COSY). This long spin coherence time is maintained through a combination of beam bunching, electron cooling, sextupole field corrections, and the suppression of collective effects through beam current limits. This record lifetime is required for a storage ring search for an intrinsic electric dipole moment on the deuteron at a statistical sensitivity level approaching 10^{-29}  e cm.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.054801DOI Listing

Publication Analysis

Top Keywords

storage ring
12
polarization lifetime
8
reach thousand-second
4
thousand-second in-plane
4
in-plane polarization
4
lifetime 097-gev/c
4
097-gev/c deuterons
4
deuterons storage
4
ring observe
4
observe deuteron
4

Similar Publications

Beyond Fixed-Size Skyrmions in Nanodots: Switchable Multistability with Ferromagnetic Rings.

Nano Lett

September 2025

Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del País Vasco, UPV/EHU, 20018 San Sebastian, Spain.

We demonstrate a novel approach to controlling and stabilizing magnetic skyrmions in ultrathin multilayer nanostructures through spatially engineered magnetostatic fields generated by ferromagnetic nanorings. Using analytical modeling and micromagnetic simulations, we show that the stray fields from a Co/Pd ferromagnetic ring with out-of-plane magnetic anisotropy significantly enhance the Néel-type skyrmion stability in an Ir/Co/Pt nanodot, even stabilizing the skyrmion in the absence of Dzyaloshinskii-Moriya interactions. We demonstrate precise control over the skyrmion size and stability.

View Article and Find Full Text PDF

Synchrotron light sources are powerful platforms for cutting-edge, multidisciplinary research, with dozens currently in operation, construction or commissioning worldwide. It is widely recognized that different research areas have specific demands for source capabilities. For the majority of synchrotron facilities, delivering high-brightness, high-flux synchrotron radiation stably through high-current electron beams is the primary mode of operation.

View Article and Find Full Text PDF

Alkaline zinc-iron flow batteries (AZIFBs) are one of the promising aqueous redox chemistries for large-scale energy storage due to their intrinsic safety and low cost. However, the energy efficiency (EE) and power density of batteries with low-cost polybenzimidazole (PBI) membranes are still limited due to the relatively poor ionic conductivity of PBI in an alkaline medium. Here, this study proposes a novel chemical approach for regulating the chemical environment of the PBI membrane.

View Article and Find Full Text PDF

Applications of nuclear magnetic resonance in exploring structure and energy storage mechanism of supercapacitors.

Magn Reson Lett

May 2025

State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.

Supercapacitors, comprising electrical double-layer capacitors (EDLCs) and pseudocapacitors, are widely acknowledged as high-power energy storage devices. However, their local structures and fundamental mechanisms remain poorly understood, and suitable experimental techniques for investigation are also lacking. Recently, nuclear magnetic resonance (NMR) has emerged as a powerful tool for addressing these fundamental issues with high local sensitivity and non-invasiveness.

View Article and Find Full Text PDF

While the effects of new solid electrolytes and active materials in cathode composites for solid-state batteries are being intensively researched, little is known about the influence of mechanical processing on the properties of these composites. Here, the influence of mechanical process parameters on the production of LiPSCl and LiNiCoMnO composite cathodes applying a planetary ball milling process is systematically investigated. It is shown that the milling process has a significant influence on the microstructure of the composite by affecting the solid electrolyte particle size and the formation of electrolyte-active material aggregates.

View Article and Find Full Text PDF