Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: In airway infections, biofilm formation has been demonstrated to be responsible for both acute and chronic events, and constitutes a genuine challenge in clinical practice. Difficulty in eradicating biofilms with systemic antibiotics has led clinicians to consider the possible role of non-antibiotic therapy. The aim of this review is to examine current evidence for the use of N-acetylcysteine (NAC) in the treatment of biofilm-related respiratory infections.

Methods: Electronic searches of PUBMED up to September 2015 were conducted, searching for 'biofilm', 'respiratory tract infection', 'N-acetylcysteine', 'cystic fibrosis', 'COPD', 'bronchiectasis', 'otitis', and 'bronchitis' in titles and abstracts. Studies included for review were primarily in English, but a few in Italian were also selected.

Results: Biofilm formation may be involved in many infections, including ventilator-associated pneumonia, cystic fibrosis, bronchiectasis, bronchitis, and upper respiratory airway infections. Many in vitro studies have demonstrated that NAC is effective in inhibiting biofilm formation, disrupting preformed biofilms (both initial and mature), and reducing bacterial viability in biofilms. There are fewer clinical studies on the use of NAC in disruption of biofilm formation, although there is some evidence that NAC alone or in combination with antibiotics can decrease the risk of exacerbations of chronic bronchitis, chronic obstructive pulmonary disease, and rhinosinusitis. However, the usefulness of NAC in the treatment of cystic fibrosis and bronchiectasis is still matter of debate. Most of the studies published to date have used oral or intramuscular NAC formulations.

Conclusions: Evidence from in vitro studies indicates that NAC has good antibacterial properties and the ability to interfere with biofilm formation and disrupt biofilms. Results from clinical studies have provided some encouraging findings that need to be confirmed and expanded using other routes of administration of NAC such as inhalation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rmed.2016.06.015DOI Listing

Publication Analysis

Top Keywords

biofilm formation
20
airway infections
8
nac
8
nac treatment
8
cystic fibrosis
8
fibrosis bronchiectasis
8
in vitro studies
8
clinical studies
8
studies
6
biofilm
5

Similar Publications

Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.

View Article and Find Full Text PDF

Purpose: The aim of the study was to evaluate the toxicity of triclosan in the Danio rerio model and mammalian cells, as well as to assess its antimicrobial and antibiofilm activity against selected bacterial pathogens.

Methods: Triclosan toxicity was assessed in Danio rerio embryos in accordance with OECD Test Guideline 236: Fish Embryo Acute Toxicity (FET) Test. Cytotoxicity was evaluated in vitro using the MTT assay on human dermal fibroblasts (BJ) and rat cardiomyoblasts (H9c2).

View Article and Find Full Text PDF

As living standards continue to rise, the demand for advanced cotton textiles that fulfill enhanced functional requirements has grown significantly. Therefore, the development of multifunctional antibacterial/hydrophobic cotton fabrics holds considerable practical value. In this study, a zeolitic imidazolate framework (ZIF-8) based hybrid material, ZIF/SiO-LDS (Long-chain derivative of silane), was synthesized via a co-precipitation method using silica, zinc nitrate hexahydrate, 3-aminopropyltriethoxysilane (KH-550), 2-methylimidazole and hexadecyltrimethylsilane (HDTMS).

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Myrciaria pilosa is a medicinal species traditionally used to treat inflammation, pain and infectious diseases. Essential oils extracted from medicinal plants have recently gained prominence as adjuvants in combating microbial resistance due to their antimicrobial properties and synergistic potential when combined with conventional antibiotics.

Aim Of The Study: Investigated the chemical composition, antibacterial activity, antibiofilm effects, and antibiotic-enhancing properties of Myrciaria pilosa essential oil.

View Article and Find Full Text PDF

Forty years of global research on WHO's four critical priority fungal pathogens: Advances and prospects.

J Infect Public Health

August 2025

Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China; National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province 410008, China; Superbugs and Multidrug Resistant Microbes Infection Control Research Ce

Background: On October 25, 2022, the World Health Organization (WHO) released its first Fungal Priority Pathogen List (FPPL), classifying Cryptococcus neoformans (C. neoformans), Candida auris (C. auris), Aspergillus fumigatus (A.

View Article and Find Full Text PDF