98%
921
2 minutes
20
The superfamily of 3'-5' polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNA(His) guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNA(His) maturation reaction, which is distinct from the tRNA(His) maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5'-editing in vivo and in vitro, establishing template-dependent 3'-5' polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3'-5' polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3'-5' polymerases in eukaryotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041481 | PMC |
http://dx.doi.org/10.1093/nar/gkw681 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
HHMI and The Rockefeller University, New York, NY 10065.
Replication of cellular chromosomes requires a primase to generate short RNA primers to initiate genomic replication. While bacterial and archaeal primase generate short RNA primers, the eukaryotic primase, Polα-primase, contains both RNA primase and DNA polymerase (Pol) subunits that function together to form a >20 base hybrid RNA-DNA primer. Interestingly, the DNA Pol1 subunit of Polα lacks a 3'-5' proofreading exonuclease, contrary to the high-fidelity normally associated with DNA replication.
View Article and Find Full Text PDFAutoimmunity
December 2025
Medicinal Genomics, Beverly, MA, USA.
For some of the COVID-19 vaccines, the drug substances released to market were manufactured differently than those used in clinical trials. Manufacturing nucleoside-modified mRNA (modRNA) for commercial COVID-19 vaccines relies on RNA polymerase transcription of a plasmid DNA template. Previous studies identified high levels of plasmid DNA in vials of modRNA vaccines, suggesting that the removal of residual DNA template is problematic.
View Article and Find Full Text PDFElife
September 2025
Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, United States.
Y-family DNA polymerases (Pols) are intrinsically highly error-prone; yet they conduct predominantly error-free translesion synthesis (TLS) in normal human cells. In response to DNA damage, Y-family Pols assemble and function together with WRN, WRNIP1, and Rev1 in TLS. Among these proteins, WRN possesses a 3'→5' exonuclease activity and an ATPase/3'→5' DNA helicase activity, and WRNIP1 has a DNA-dependent ATPase activity.
View Article and Find Full Text PDFChin Med J (Engl)
September 2025
Medical Care Center, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan 572013, China.
Background: Myocardial ischemia/reperfusion (I/R) injury contributes significantly to cardiac dysfunction following myocardial infarction, mainly due to excessive oxidative stress and mitochondrial injury. Despite advances in reperfusion therapies, secondary injuries remain a challenge, necessitating deeper insight into the molecular mechanisms underlying I/R injury. In the present study, we aim to investigate the roles of circular ribonucleic acid (circRNA) RERE (circRERE) in myocardial I/R injury.
View Article and Find Full Text PDFCancer Genomics Proteomics
August 2025
Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.;
Background/aim: Acute lymphoblastic leukemia (ALL) is the most common pediatric hematologic malignancy, particularly affecting children aged 2~5 years. Tissue inhibitor of metalloproteinase-2 (TIMP-2), a key regulator of MMP-2 activity, has been implicated in several cancers, yet its genetic role in childhood ALL remains unexplored.
Materials And Methods: This study investigated four polymorphic genotypes, rs8179090, rs4789936, rs2009196, and rs7342880, in 266 Taiwanese children with ALL and 266 matched controls using polymerase chain reaction-restriction fragment length polymorphism methodology.