98%
921
2 minutes
20
Activation of innate immunity contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Microglia accumulation and activation within the brain has recently been shown to induce neuronal cell death after eSAH. In isolated mouse brain capillaries after eSAH, we show a significantly increased gene expression for intercellular adhesion molecule-1 (ICAM-1) and P-selectin. Hence, we hypothesized that extracerebral intravascular inflammatory processes might initiate the previously reported microglia accumulation within the brain tissue. We therefore induced eSAH in knockout mice for ICAM-1 (ICAM-1) and P-selectin glycoprotein ligand-1 (PSGL-1) to find a significant decrease in neutrophil-endothelial interaction within the first 7 days after the bleeding in a chronic cranial window model. This inhibition of neutrophil recruitment to the endothelium results in significantly ameliorated microglia accumulation and neuronal cell death in knockout animals in comparison to controls. Our results suggest an outside-in activation of the CNS innate immune system at the vessel/brain interface following eSAH. Microglia cells, as part of the brain's innate immune system, are triggered by an inflammatory reaction in the microvasculature after eSAH, thus contributing to neuronal cell death. This finding offers a whole range of new research targets, as well as possible therapy options for patients suffering from eSAH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12975-016-0485-3 | DOI Listing |
Biochem Pharmacol
September 2025
Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. El
Hypoxic-ischemic brain damage (HIBD) is a severe condition leading to extensive neuronal loss and functional impairments, representing a significant challenge in neonatal care. PFGA12, a peptide derived from fibrinogen alpha chain (FGA), which is notably downregulated in the umbilical cord blood of hypoxic-ischemic encephalopathy (HIE) infants. We demonstrate that PFGA12 significantly enhances cell viability and mitigates oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cell death.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Spine Surgery, Zhongda Hospital Southeast University, 210009 Nanjing, Jiangsu, China.
Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.
Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).
J Stroke Cerebrovasc Dis
September 2025
Department of pain medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.. Electronic address:
Background: Ischemic stroke is a leading cause of neurological disability. Current therapies fail to address its multifactorial pathologies. Miltirone, a bioactive compound from Salvia miltiorrhiza, has shown antioxidative and anti-inflammatory potential.
View Article and Find Full Text PDFRedox Biol
September 2025
Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, Jiangsu, 226000, China; Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu, 226000, China. Elec
Spinal cord injury (SCI) is a devastating condition characterized by the accumulation of myelin debris (MD), persistent neuroinflammation, and impaired neural regeneration. Although macrophages are pivotal for MD clearance, the impact of excessive MD phagocytosis on macrophage phenotype and function remains poorly understood. Building upon our prior evidence that exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, mitigates microglia-driven neuroinflammation post-SCI, this study elucidates the therapeutic efficacy and underlying mechanisms of Ex-4 in alleviating macrophage senescence, restoring efferocytotic capacity, and facilitating neural repair.
View Article and Find Full Text PDFCell Rep
September 2025
Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology Polish Academy of Sciences, Pasteur St. 3, Warsaw 02-093, Poland; Laboratory of Tumour Hypoxia and Epigenomics, Nencki Institute of Experimental Biology Polish Academy of Sciences, Pasteur St. 3, Warsaw 02-093, Poland. El
Hypoxia is a key histopathological feature of glioblastoma, associated with tumor aggressiveness and therapy resistance. Glioma-associated microglia and macrophages (GAMs) are key players in the tumor microenvironment of glioblastoma and acquire immunosuppressive properties during tumor progression. We show that hypoxia alters key GAM identity genes, as it upregulates the expression of monocytic marker lectin galactoside-binding doluble 3 (Lgals3) and downregulates the homeostatic microglial markers purinergic receptor P2Y G-protein coupled 12 (P2ry12) and transmembrane protein 119 (Tmem119) in GAMs co-cultured with glioma cells and in glioblastoma patients' samples.
View Article and Find Full Text PDF