98%
921
2 minutes
20
Human amniotic mesenchymal cells (hAMTCs) possess interesting immunomodulatory properties, making them attractive candidates for regenerative medicine applications. Recent in vivo reports argue in favour of an important role for macrophages as targets of hAMTC-mediated suppression of inflammation and the enhancement of tissue repair. However, a comprehensive study of the effects of hAMTCs and their conditioned medium (CM) on human macrophage differentiation and function is unavailable. In the present study we found that hAMTCs and CM induce the differentiation of myeloid cells (U937 and monocytes) towards macrophages. We then investigated their effects on monocytes differentiated toward pro-inflammatory M1 and anti-inflammatory M2 macrophages. Monocytes treated under M1 conditions in the presence of hAMTCs or CMs shifted towards M2-like macrophages, which expressed CD14, CD209, CD23, CD163 and PM-2 K, possessed higher phagocytic activity and produced higher IL-10 and lower pro-inflammatory cytokines. They were also poor T cell stimulators and Th1 inducers, while they were able to increase activated and naïve suppressive Treg subsets. We show that prostaglandins, and not IL-6, play a role in determining the M2 activation status. Instead, monocytes treated under M2 conditions in the presence of hAMTCs or CM retained M2-like features, but with an enhanced anti-inflammatory profile, having a reduced expression of the co-stimulatory molecule CD80, reduced phagocytosis activity and decreased the secretion of inflammatory chemokines. Importantly, we provide evidence that macrophages re-educated by CM improve tissue regeneration/repair in wound-healing models. In conclusion, we identified new cell targets of hAMTCs and their bioactive factors and here provide insight into the beneficial effects observed when these cells are used in therapeutic approaches in vivo. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697700 | PMC |
http://dx.doi.org/10.1002/term.2193 | DOI Listing |
Crit Rev Immunol
January 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye.
The biological activities and phytochemical composition of Alchemilla daghestanica and Alchemilla minusculiflora were investigated for the first time. Methanol extracts from the aerial and root parts of both species were assessed. The total phenolic content was highest in the root extracts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical Univer
Ocular fibrosis, a severe consequence of excessive retinal wound healing, can lead to vision loss following retinal injury. Proliferative vitreoretinopathy (PVR), a common form of ocular fibrosis, is a major cause of blindness, characterized by the formation of extensive fibrous proliferative membranes. Understanding the cellular origins of PVR-associated fibroblasts (PAFs) is essential to decipher the mechanisms of ocular wound healing.
View Article and Find Full Text PDFPLoS Genet
September 2025
Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France.
Unscheduled whole genome duplication (WGD), also described as unscheduled or non-physiological polyploidy, can lead to genetic instability and is commonly observed in human cancers. WGD generates DNA damage due to scaling defects between replication factors and DNA content. As a result DNA damage repair mechanisms are thought to be critical for ensuring cell viability and proliferation under these conditions.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan.
In adult mammals and other highly developed animals, incomplete wound healing, scar formation, and fibrosis occur. No treatment for complete tissue regeneration is currently available. However, in mice, at up to 13 days of gestation, early embryonic wounds regenerate without visible scarring.
View Article and Find Full Text PDF