Visualizing the Ensemble Structures of Protein Complexes Using Chemical Cross-Linking Coupled with Mass Spectrometry.

Biophys Rep

CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 China.

Published: December 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Abstract: Chemical cross-linking coupled with mass spectrometry (CXMS) identifies protein residues that are close in space, and has been increasingly used for modeling the structures of protein complexes. Here we show that a single structure is usually sufficient to account for the intermolecular cross-links identified for a stable complex with sub-µmol/L binding affinity. In contrast, we show that the distance between two cross-linked residues in the different subunits of a transient or fleeting complex may exceed the maximum length of the cross-linker used, and the cross-links cannot be fully accounted for with a unique complex structure. We further show that the seemingly incompatible cross-links identified with high confidence arise from alternative modes of protein-protein interactions. By converting the intermolecular cross-links to ambiguous distance restraints, we established a rigid-body simulated annealing refinement protocol to seek the minimum set of conformers collectively satisfying the CXMS data. Hence we demonstrate that CXMS allows the depiction of the ensemble structures of protein complexes and elucidates the interaction dynamics for transient and fleeting complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871902PMC
http://dx.doi.org/10.1007/s41048-015-0015-yDOI Listing

Publication Analysis

Top Keywords

structures protein
12
protein complexes
12
ensemble structures
8
chemical cross-linking
8
cross-linking coupled
8
coupled mass
8
mass spectrometry
8
intermolecular cross-links
8
cross-links identified
8
transient fleeting
8

Similar Publications

In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.

View Article and Find Full Text PDF

Serine protease inhibitors (SERPINs) are involved in various physiological processes and diseases, such as inflammation, cancer metastasis, and neurodegeneration. Their role in viral infections is poorly understood, as their expression patterns during infection and the range of proteases they target have yet to be fully characterized. Here, we show widespread expression of human SERPINs in response to respiratory virus infections, both in bronchioalveolar lavages from COVID-19 patients and in polarized human airway epithelial cultures.

View Article and Find Full Text PDF

Structure, function and assembly of nuclear pore complexes.

Nat Rev Mol Cell Biol

September 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.

View Article and Find Full Text PDF

Semaphorin 3A-mediated perineuronal nets formation incubates depressive-like behaviors in male mice via activating parvalbumin-expressing interneurons.

Mol Psychiatry

September 2025

Department of Pharmacology, School of Basic Medicine and Department of Pharmacy, Tongji Hospital, Tongji Medical College; and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. chenjg@hu

Dysfunction of parvalbumin-expressing interneurons (PV-INs) in the cerebral cortex has been implicated in major depressive disorder. Perineuronal nets (PNNs), which encapsulate PV-INs, are considered to influence the structural and functional properties of PV-INs. Semaphorin 3A (Sema3A) is a secreted protein constituent of PNNs, but the specific roles of Sema3A in modulating PV-INs during stress remain unknown.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF