Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A study was undertaken to determine the neuroprotective potential of Linezolid (LIN) in an animal model. Female Sprague-Dawley rats were either given a single (100 mg/kg) dose or treated daily for 4 weeks. A validated LC-MS/MS method was used to measure LIN levels in plasma and brain, this was paired with mass spectrometry imaging to determine the tissue spatial distribution of the drug. The results showed that after a single dose there was poor penetration of the drug into the brain. With multiple doses there were high tissue levels, with the drug reaching steady state in subsequent weeks. LIN displayed a promising distribution pattern with localisation in the brainstem. Systemic circulation is fed into the brain by the carotid and vertebral arteries which enter through the brain stem, therefore high drug concentrations is this area may protect against infectious agents entering via this route.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-016-9685-0DOI Listing

Publication Analysis

Top Keywords

neuroprotective potential
8
potential linezolid
8
mass spectrometry
8
linezolid quantitative
4
quantitative distribution
4
distribution study
4
study mass
4
spectrometry study
4
study undertaken
4
undertaken determine
4

Similar Publications

Background: Major depressive disorder (MDD) is associated with neuro-immune - metabolic - oxidative (NIMETOX) pathways.

Aims: To examine the connections among NIMETOX pathways in outpatient MDD (OMDD) with and without metabolic syndrome (MetS); and to determine the prevalence of NIMETOX aberrations in a cohort of OMDD patients.

Methods: We included 67 healthy controls and 66 OMDD patients and we assessed various NIMETOX pathways.

View Article and Find Full Text PDF

Targeted temperature management (TTM) is currently the only potentially neuroprotective intervention recommended for post-cardiac arrest care. However, there are concerns among the scientific community regarding conflicting evidence supporting this recommendation. Moreover, the bulk of trials included in systematic reviews that inform guidelines and recommendations have been conducted in developed countries, with case mix and patient characteristics that significantly differ from the reality of developing countries such as Brazil.

View Article and Find Full Text PDF

The neuroprotective potential of tyrosine kinase inhibitors (TKIs), potent anticancer drugs, was verified against various neurodegenerative insults, but not Huntington's disease (HD). These promising outcomes were due to their ability to modulate various intracellular signalling pathways. Hence, the current study aimed to evaluate the neuroprotective effects of lapatinib and pazopanib in the 3-nitropropionic (3-NP)-induced HD model in rats.

View Article and Find Full Text PDF

Plants, Pills, and the Brain: Exploring Phytochemicals and Neurological Medicines.

Int J Plant Anim Environ Sci

August 2025

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.

Neurological disorders, such as Alzheimer's disease, Parkinson's disease, epilepsy, spinal cord injuries, and traumatic brain injuries, represent substantial global health challenges due to their chronic and often progressive nature. While allopathic medicine offers a range of pharmacological interventions aimed at managing symptoms and mitigating disease progression, it is accompanied by limitations, including adverse side effects, the development of drug resistance, and incomplete efficacy. In parallel, phytochemicals-bioactive compounds derived from plants-are receiving increased attention for their potential neuroprotective, antioxidant, and anti-inflammatory properties.

View Article and Find Full Text PDF

Mitochondrial dysfunction is one of the primary cellular conditions involved in developing Huntington's disease (HD) pathophysiology. The accumulation of mutant huntingtin protein with abnormal PolyQ repeats resulted in the death of striatal neurons with enhanced mitochondrial fragmentation. In search of neuroprotective molecules against HD conditions, we synthesized a set of isoxazole-based small molecules to screen their suitability as beneficial chemicals improving mitochondrial health.

View Article and Find Full Text PDF