Artificial light on water attracts turtle hatchlings during their near shore transit.

R Soc Open Sci

Australian Institute of Marine Science c/o The UWA Oceans Institute (MO96), University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia; Indian Ocean Marine Research Centre and UWA Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley, W

Published: May 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s(-1). This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892457PMC
http://dx.doi.org/10.1098/rsos.160142DOI Listing

Publication Analysis

Top Keywords

artificial light
20
turtle hatchlings
16
current speed
8
light
7
artificial
6
hatchlings
6
turtle
5
light water
4
water attracts
4
attracts turtle
4

Similar Publications

UV2 and LW opsin genes mediate phototactic responses in the Asian lady beetle, Harmonia axyridis.

Insect Sci

September 2025

Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

Phototaxis is a critical behavior in insects and is closely linked to vision and environmental adaptation. Understanding how insects perceive light and exhibit phototactic responses is crucial for assessing the ecological impact of artificial light at night. However, the molecular and neural mechanisms that regulate phototactic responses in insects remain largely unknown.

View Article and Find Full Text PDF

Large language models (LLMs) have been successfully used for data extraction from free-text radiology reports. Most current studies were conducted with LLMs accessed via an application programming interface (API). We evaluated the feasibility of using open-source LLMs, deployed on limited local hardware resources for data extraction from free-text mammography reports, using a common data element (CDE)-based structure.

View Article and Find Full Text PDF

Nighttime pedestrian safety in different communities: Application of artificial intelligence techniques.

J Safety Res

September 2025

Department of Civil & Environmental Engineering, The University of Tennessee, Knoxville, United States. Electronic address:

Introduction: Pedestrian safety is a growing concern in the United States transportation sector, with around 7,500 pedestrian crash fatalities reported in the United States in recent years. Pedestrians are at an even higher risk of crashes at night due to limited visibility and alcohol impairment of the drivers or pedestrians. The U.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are powerful vectors for the intracellular delivery of a diverse array of therapeutic molecules. Despite their potential, the rational design of CPPs remains a challenging task that often requires extensive experimental efforts and iterations. In this study, we introduce an innovative approach for the de novo design of CPPs, leveraging the strengths of machine learning (ML) and optimization algorithms.

View Article and Find Full Text PDF

Near-infrared Artificial Synapse Based on a Pristine InGaAs Nanowire Synaptic Transistor.

Nanotechnology

September 2025

Beijing University of Technology, Key Laboratory of Optoelectronics Technology, School of Information Science and Technology., Beijing, 100124, CHINA.

The rapid advancements in the field of artificial intelligence have intensified the urgent need for low-power, high-speed artificial synaptic devices. Here, a near-infrared (NIR) artificial synaptic device is successfully realized based on pristine InGaAs nanowires (NWs), which achieves a paired-pulse facilitation (PPF) of up to 119%. Additionally, a postsynaptic current (PSC) in memory storage behavior has been implemented by applying different voltage pulses along with continuous illumination of 1064 nm NIR light due to the memristor characteristics of the device.

View Article and Find Full Text PDF