Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cyclohexapeptide natural product dianthin G promotes osteoblast (bone-forming cell) proliferation in vitro at nanomolar concentrations, and is therefore considered a promising candidate for the treatment of osteoporosis. An N(α)-methyl amide bond scan of dianthin G was performed to probe the effect of modifying amide bonds on osteoblast proliferation. In addition, to provide greater structural diversity, a series of dicarba dianthin G analogues was synthesised using ring closing metathesis. Dianthin G and one novel dicarba analogue increased the number of human osteoblasts and importantly they did not increase osteoclast (bone-resorbing cell) differentiation in bone marrow cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6ob00983bDOI Listing

Publication Analysis

Top Keywords

dianthin
5
synthesis vitro
4
vitro bone
4
bone cell
4
cell activity
4
activity analogues
4
analogues cyclohexapeptide
4
cyclohexapeptide dianthin
4
dianthin cyclohexapeptide
4
cyclohexapeptide natural
4

Similar Publications

Saponin-mediated endosomal escape is a mechanism that increases the cytotoxicity of type I ribosome-inactivating proteins (type I RIPs). In order to actualize their cytotoxicity, type I RIPs must be released into the cytosol after endocytosis. Without release from the endosomes, type I RIPs are largely degraded and cannot exert their cytotoxic effects.

View Article and Find Full Text PDF

A cleavable peptide adapter augments the activity of targeted toxins in combination with the glycosidic endosomal escape enhancer SO1861.

BMC Biotechnol

April 2024

Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.

Background: Treatment with tumor-targeted toxins attempts to overcome the disadvantages of conventional cancer therapies by directing a drug's cytotoxic effect specifically towards cancer cells. However, success with targeted toxins has been hampered as the constructs commonly remain bound to the outside of the cell or, after receptor-mediated endocytosis, are either transported back to the cell surface or undergo degradation in lysosomes. Hence, solutions to ensure endosomal escape are an urgent need in treatment with targeted toxins.

View Article and Find Full Text PDF

Saponins are plant metabolites that possess multidirectional biological activities, among these is antitumor potential. The mechanisms of anticancer activity of saponins are very complex and depend on various factors, including the chemical structure of saponins and the type of cell they target. The ability of saponins to enhance the efficacy of various chemotherapeutics has opened new perspectives for using them in combined anticancer chemotherapy.

View Article and Find Full Text PDF

Correction: Panjideh et al. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. 2022, , 478.

Toxins (Basel)

October 2022

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany.

The authors wish to make corrections to their paper [...

View Article and Find Full Text PDF

Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861.

Toxins (Basel)

July 2022

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany.

Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity manifold. Here we tested this technology for the first time in a lymphoma in vivo model.

View Article and Find Full Text PDF