Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL-slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4866514PMC
http://dx.doi.org/10.3389/fphys.2016.00173DOI Listing

Publication Analysis

Top Keywords

dmp1 null
24
skeletal muscle
12
mouse model
8
autosomal recessive
8
recessive hypophosphatemic
8
hypophosphatemic rickets
8
muscle
8
null mice
8
edl sol
8
sol muscles
8

Similar Publications

Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 ()-8kb- mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts.

View Article and Find Full Text PDF

Bone-forming osteoblasts have been a cornerstone of bone biology for more than a century. Most research toward bone biology and bone diseases center on osteoblasts. Overlooked are the 90% of bone cells, called osteocytes.

View Article and Find Full Text PDF

Activation of Notch3 in osteoblasts/osteocytes causes compartment-specific changes in bone remodeling.

J Biol Chem

August 2021

Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA.

Notch receptors maintain skeletal homeostasis. NOTCH1 and 2 have been studied for their effects on bone remodeling. Although NOTCH3 plays a significant role in vascular physiology, knowledge about its function in other cellular environments, including bone, is limited.

View Article and Find Full Text PDF

It has been assumed that the secondary cartilage in the temporomandibular joint (TMJ), which is the most complex and mystery joint and expands rapidly after birth, is formed by periochondrium-derived chondrocytes. The TMJ condyle has rich attachment sites of tendon, which is thought to be solely responsible for joint movement with a distinct cell lineage. Here, we used a Scx-Cre ERT2 mouse line (the tracing line for progenitor and mature tendon cells) to track the fate of tendon cells during TMJ postnatal growth.

View Article and Find Full Text PDF

Dentin sialophosphoprotein (DSPP), which expresses and synthesizes in odontoblasts of dental pulp, is a critical protein for normal teeth mineralization. Originally, DSPP was identified as a dentin-specific protein. In 2010, DSPP was also found in femoral head cartilage, and it is still unclear what roles DSPP play in femoral head cartilage formation, growth, and maintenance.

View Article and Find Full Text PDF