Publications by authors named "Chad D Touchberry"

Skeletal muscle dysfunction accompanies the clinical disorders of chronic kidney disease (CKD) and hereditary hypophosphatemic rickets. In both disorders, fibroblast growth factor 23 (FGF23), a bone-derived hormone regulating phosphate and vitamin D metabolism, becomes chronically elevated. FGF23 has been shown to play a direct role in cardiac muscle dysfunction; however, it is unknown whether FGF23 signaling can also directly induce skeletal muscle dysfunction.

View Article and Find Full Text PDF

Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition.

View Article and Find Full Text PDF

Background: We have previously shown that the thromboxane (TXA2) receptor agonist, U46619, can directly induce ventricular arrhythmias that were associated with increases in intracellular calcium in cardiomyocytes. Since TXA2 is an inflammatory mediator and induces direct calcium changes in cardiomyocytes, we hypothesized that TXA2 released during ischemia or inflammation could also cause cardiac remodeling.

Methods: U46619 (0.

View Article and Find Full Text PDF

Fibroblast growth factor 23 (FGF23) is secreted primarily by osteocytes and regulates phosphate and vitamin D metabolism. Elevated levels of FGF23 are clinically associated with endothelial dysfunction and arterial stiffness in chronic kidney disease (CKD) patients; however, the direct effects of FGF23 on endothelial function are unknown. We hypothesized that FGF23 directly impairs endothelial vasorelaxation by hindering nitric oxide (NO) bioavailability.

View Article and Find Full Text PDF

Introduction: α7β1 integrin links the extracellular matrix to the focal adhesion (FA) in skeletal muscle and serves as a stabilizing and signal relayer. Heat shock (HS) induces expression of proteins that interact with the FA.

Methods: Male Wistar rats were assigned to 1 of 3 groups: control (CON); eccentric exercise (EE); or EE+HS (HS).

View Article and Find Full Text PDF

The effects of resistance exercise on fiber-type-specific expression of insulin-like growth factor I receptor (IGF-1R) and glucose transporter 4 (GLUT4) was determined in 6 healthy males. The expression of both genes increased in Type I fibers (p < 0.05), but only GLUT4 increased (p < 0.

View Article and Find Full Text PDF

Fibroblast growth factor 23 (FGF23) is a hormone released primarily by osteocytes that regulates phosphate and vitamin D metabolism. Recent observational studies in humans suggest that circulating FGF23 is independently associated with cardiac hypertrophy and increased mortality, but it is unknown whether FGF23 can directly alter cardiac function. We found that FGF23 significantly increased cardiomyocyte cell size in vitro, the expression of gene markers of cardiac hypertrophy, and total protein content of cardiac muscle.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) are chaperones that are known to have important roles in facilitating protein synthesis, protein assembly and cellular protection. While HSPs are known to be induced by damaging exercise, little is known about how HSPs actually mediate skeletal muscle adaption to exercise. The purpose of this study was to determine the effects of a heat shock pretreatment and the ensuing increase in HSP expression on early remodeling and signaling (2 and 48 h) events of the soleus (Sol) muscle following a bout of downhill running.

View Article and Find Full Text PDF

Store-operated Ca(2+) entry (SOCE) has recently been shown to be of physiological and pathological importance in the heart, particularly during cardiac hypertrophy. However, measuring changes in intracellular Ca(2+) during SOCE is very difficult to study in adult primary cardiomyocytes. As a result there is a need for a stable and reliable in vitro model of SOCE which can be used to test cardiac drugs and investigate the role of SOCE in cardiac pathology.

View Article and Find Full Text PDF

It has been shown that mucosal immunity measures such as salivary immunoglobulin A (s-IgA) can be affected by sport activities and has resulted in an increased susceptibility to infection. However, there is limited research that has evaluated the change in s-IgA throughout a full sport training season. The purpose of the study was to evaluate the change in s-IgA levels and incidence of upper respiratory infection in the National Collegiate Athletic Association Division I level female soccer athletes compared to age matched controls over an entire sport training season.

View Article and Find Full Text PDF

Aging is associated with insulin resistance and decreased insulin-stimulated glucose uptake into skeletal muscle. Although the mechanisms underlying age-related insulin resistance are not clearly defined, impaired defense against inflammation and tissue oxidative stress are likely causes. Heat shock proteins (HSPs) have been shown to protect tissue from oxidative stress and inhibit the activation of stress kinases such as JNK, known to interfere with the insulin signaling pathway.

View Article and Find Full Text PDF

Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is the most recently identified phosphoinositide, and its functions have yet to be fully elucidated. Recently, members of our muscle group have shown that PI(3,5)P2 plays an important role in skeletal muscle function by altering Ca(2+) homeostasis. Therefore, we hypothesized that PI(3,5)P2 may also modulate cardiac muscle contractility by altering intracellular Ca(2+) ([Ca(2+)](i)) in cardiac myocytes.

View Article and Find Full Text PDF

Forskolin (FSK) is capable of both stimulating and inhibiting the intracellular signaling pathways of protein synthesis tissues other than skeletal muscle. The purpose of this investigation was to determine if FSK administration affects various elements of the protein kinase B (Akt)-mammalian target of rapamycin (mTOR) pathway in human skeletal muscle. Ten (n = 10) healthy, young (21.

View Article and Find Full Text PDF

The effects of supplemental carbohydrate (CHO) ingestion on the performance of squats to exhaustion (STE) were investigated with eight resistance-trained men. Subjects participated in a randomized, counterbalanced, double-blind, placebo-controlled protocol with testing separated by 7 days. Subjects consumed 0.

View Article and Find Full Text PDF

The purpose of this investigation was to examine the expression of three commonly used housekeeping genes -- glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta(2)-microglobulin (beta(2)M), and RNA polymerase 2a (polR2a) -- in elderly (E) compared to young (Y) subjects. Nine young subjects (22.7 +/- 3.

View Article and Find Full Text PDF

Training alterations in elite cyclists may cause transient changes in glomerular filtration rate. To these authors' knowledge, no biochemical investigation of chronic renal function in athletes during a training cycle exists. The purpose of the present archival study was to evaluate the effects of training on homeostatic renal function, evaluated predicted glomerular filtration rate (GFR).

View Article and Find Full Text PDF