Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to better understand the effects of biostimulation and bioaugmentation processes on a marine microbial community, three different mesocosm experiments were planned. Natural seawater (10.000L) was artificially polluted with crude oil (1L) and (1) inorganic nutrients (Biostimulating Mesocosm, BM), (2) inorganic nutrients and an inoculum of Alcanivorax borkumensis SK2 (Single Bioaugmentation Mesocosm, SBM), (3) inorganic nutrients and inoculums of A. borkumensis SK2 and Thalassolituus oleivorans MIL-1 (Consortium Bioaugmentation Mesocosm, CBM). During the experimental period (20days), samples were taken from each mesocosm and the community structure was analyzed by PCR-DGGE. The 16S rRNA gene DGGE banding patterns and sequence analysis demonstrated that biostimulation had the lowest effect on microbial biodiversity in the mesocosms; however, the biodiversity of the marine microbial community dramatically decreased in the CBM (Shannon index was 0.6 in T3). The community structures among the three mesocosms were also markedly different, and major bacteria derived from DGGE bands were related to uncultured Gamma Proteobacteria. The biodegradation results show that the Single Bioaugmentation Mesocosm (SBM) system had the highest percentage of degradation (95%) in comparison to the BM mesocosm (80%) and CBM (70%).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2015.09.013DOI Listing

Publication Analysis

Top Keywords

marine microbial
12
microbial community
12
inorganic nutrients
12
bioaugmentation mesocosm
12
mesocosm
8
borkumensis sk2
8
single bioaugmentation
8
mesocosm sbm
8
bioaugmentation
5
community
5

Similar Publications

Soil Carbon Availability Drives Depth-Dependent Responses of Microbial Nitrogen Use Efficiency to Warming.

Glob Chang Biol

September 2025

State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.

Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.

View Article and Find Full Text PDF

This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.

View Article and Find Full Text PDF

Estuarine plumes: Modulators of dissolved organic matter molecular signatures and biogeochemical fate in coastal ecosystems.

Mar Pollut Bull

September 2025

School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; The Research Center of Ocean Climate, Sun Yat-sen University, Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of E

Estuarine plumes (EPs) are recognized as critical drivers of dissolved organic matter (DOM) heterogeneity in coastal zones, primarily by inducing phytoplankton blooms and subsequent bottom-water dissolved oxygen (DO) depletion. However, the specific mechanisms governing the EP-driven transformations of DOM molecular composition and biogeochemical fate remain elusive. Here, we integrated optical spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular signatures of DOM and their biogeochemical transformations within EP-influenced bottom waters of the Pearl River Estuary.

View Article and Find Full Text PDF

Elucidating the impact of salt concentration on volatile flavor profiles and microbial dynamics in fermented cockle paste using GC-IMS and high-throughput 16S rDNA sequencing.

Food Res Int

November 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

In the present study, cockles were utilized as the raw material to investigate how different salt concentrations and fermentation periods influence the physicochemical indices, microbial community shifts, and volatile flavor components of cockle paste. Through the analysis of volatile flavor substances via GC-IMS, a total of 77 volatile flavor compounds were identified, among which aldehydes accounted for the largest proportion. High-throughput 16S rDNA sequencing was applied to decode the composition of dominant microbiota in the cockle paste samples.

View Article and Find Full Text PDF

Patients with diabetics usually exhibit disordered glucose and lipid metabolism, as well as disrupted intestinal microecology. Dietary adjustment is essential for controlling diabetes. This study evaluated the ameliorative effects of psyllium-derived medium-molecular-weight arabinoxylan (MMW-AX) on glycolipid biochemical indicators, pathological symptoms, and intestinal microbial diversity in mice with Type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF