98%
921
2 minutes
20
Simple modification of benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine-8,16-dione, an old and almost-forgotten vat dye, by reduction of its carbonyl groups and subsequent O-alkylation, yields solution-processable, electroactive, conjugated compounds of the periazaacene type, suitable for the use in organic electronics. Their electrochemically determined ionization potential and electron affinity of about 5.2 and -3.2 eV, respectively, are essentially independent of the length of the alkoxyl substituent and in good agreement with DFT calculations. The crystal structure of 8,16-dioctyloxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine (FC-8), the most promising compound, was solved. It crystallizes in space group P1‾ and forms π-stacked columns held together in the 3D structure by dispersion forces, mainly between interdigitated alkyl chains. Molecules of FC-8 have a strong tendency to self-organize in monolayers deposited on a highly oriented pyrolytic graphite surface, as observed by STM. 8,16-Dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines are highly luminescent, and all have photoluminescence quantum yields of about 80 %. They show efficient electroluminescence, and can be used as guest molecules with a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl host in guest/host-type organic light-emitting diodes. The best fabricated diodes showed a luminance of about 1900 cd m(-12) , a luminance efficiency of about 3 cd A(-1) , and external quantum efficiencies exceeding 0.9 %.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201600513 | DOI Listing |
Adv Mater
September 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Organic Electronic Materials Laboratory, Department of Information Display, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.
Solution-processed phosphorescent inverted organic light-emitting diodes (s-IOLEDs) have garnered significant attention due to their excellent stability and high performance. However, frequently used inorganic electron transport layers usually cause exciton dissociation at the emitting layer interface, leading to low device efficiency and severe efficiency roll-off. In this work, we designed a cross-linkable triazine-grafted electron transport copolymer (PPDPT--PBCB) with a high triplet energy (3.
View Article and Find Full Text PDFDalton Trans
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
Single-component white-light-emitters ensure color stability while reducing device complexity, and are ideal candidates for white light-emitting diodes (WLEDs). However, the realization of single-component white-light emission with high efficiency and stability is still a challenge. Herein, a supramolecular cation strategy was used to synthesize the organic-inorganic hybrid copper(I) halide [(AMTA)(18C6)]CuI (1), with AMTA = 1-adamantanamine and 18C6 = 18-crown-6.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
Reverse intersystem crossing (RISC) process is critical for thermally activated delayed fluorescence (TADF) materials to realize spin-flip of triplet excitons in organic light-emitting diodes (OLEDs), but the RISC processes of most TADF materials are not fast enough, undermining electroluminescence (EL) efficiency stability and operational lifetime. Herein, a symmetry breaking strategy to accelerate RISC processes is proposed. By designing asymmetric electron-withdrawing backbone consisting of benzonitrile and xanthone/thioxanthone groups, two new asymmetric TADF molecules, 4tCzCN-pXT and 4tCzCN-pTXT, with multiple 3,6-di-tert-butylcarbazole donors are successfully developed.
View Article and Find Full Text PDFChemphyschem
September 2025
Institute of Physics, Polish Academy of Sciences, PL-02-668, Warsaw, Poland.
B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.
View Article and Find Full Text PDF