Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Static and dynamic magnetic solitons play a critical role in applied nanomagnetism. Magnetic droplets, a type of non-topological dissipative soliton, can be nucleated and sustained in nanocontact spin-torque oscillators with perpendicular magnetic anisotropy free layers. Here, we perform a detailed experimental determination of the full droplet nucleation boundary in the current-field plane for a wide range of nanocontact sizes and demonstrate its excellent agreement with an analytical expression originating from a stability analysis. Our results reconcile recent contradicting reports of the field dependence of the droplet nucleation. Furthermore, our analytical model both highlights the relation between the fixed layer material and the droplet nucleation current magnitude, and provides an accurate method to experimentally determine the spin transfer torque asymmetry of each device.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837446PMC
http://dx.doi.org/10.1038/ncomms11209DOI Listing

Publication Analysis

Top Keywords

droplet nucleation
16
nucleation boundary
8
magnetic
4
magnetic droplet
4
nucleation
4
boundary orthogonal
4
orthogonal spin-torque
4
spin-torque nano-oscillators
4
nano-oscillators static
4
static dynamic
4

Similar Publications

Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.

View Article and Find Full Text PDF

Tracking phase transitions of tactoids in sulfated cellulose nanocrystals using second harmonic generation microscopy.

Carbohydr Polym

November 2025

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.

View Article and Find Full Text PDF

Time-Resolved Small-Angle X-Ray Studies of Spherical Micelle Formation and Growth During Polymerization-Induced Self-Assembly in Polar Solvents.

Small

September 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South Chi

Self-assembled poly(2-dimethylaminoethyl methacrylate)-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-PDPA) diblock copolymer nanoparticles are widely employed in biological applications, driving the need for a robust and scalable production method. Although polymerization-induced self-assembly (PISA) enables efficient nanoparticle synthesis at high solids content, its research and application to PDMA-PDPA are limited, likely due to kinetic trapping. Leveraging our recently developed generic time-resolved small-angle X-ray scattering (TR-SAXS) approach for PISA in non-polar media, a reversible addition-fragmentation chain transfer-mediated PDMA-PDPA PISA process in polar solvent that produces spherical micelles is examined.

View Article and Find Full Text PDF

Two-Step Nucleation and Amorphization of Carbamazepine Using a Micro-Droplet Precipitation System.

Pharmaceutics

August 2025

Department of Chemical Engineering (Integrated Engineering Program), College of Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea.

: Transforming poorly soluble crystalline drugs into their amorphous form is a well-established strategy in pharmaceutical science to enhance their solubility and improve their clinical efficacy. However, developing amorphous forms of organic drugs for pharmaceutical applications presents significant technical hurdles due to the lack of suitable analytical tools for the amorphization process. Carbamazepine is a crystalline BCS class II drug commonly used for epilepsy and trigeminal neuralgia, whose clinical efficacy is compromised by its low solubility and slow dissolution.

View Article and Find Full Text PDF

Though ubiquitous in everyday life, the formation of dew on grass arises from a precise balance of environmental conditions and surface microstructure. While condensation requires sufficient atmospheric moisture availability and cooling below the dew point, the formation of stable, spherical droplets is dependent on specialized surface architectures that promote nucleation and resist total wetting. Here, a closer look at the formation, growth, and dynamics of microscale dew droplets on the surface of wheatgrass leaves, investigating the role of epicuticular wax, is provided.

View Article and Find Full Text PDF