Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With rapid economic growth, transboundary river basin pollution in China has become a very serious problem. Based on practical experience in other countries, cooperation among regions is an economic way to control the emission of pollutants. This study develops a game theoretic simulation model to analyze the cost effectiveness of reducing water pollutant emissions in four regions of the Jialu River basin while considering the stability and fairness of four cost allocation schemes. Different schemes (the nucleolus, the weak nucleolus, the Shapley value and the Separable Cost Remaining Benefit (SCRB) principle) are used to allocate regionally agreed-upon water pollutant abatement costs. The main results show that the fully cooperative coalition yielded the highest incremental gain for regions willing to cooperate if each region agreed to negotiate by transferring part of the incremental gain obtained from the cooperation to cover the losses of other regions. In addition, these allocation schemes produce different outcomes in terms of their fairness to the players and in terms of their derived stability, as measured by the Shapley-Shubik Power Index and the Propensity to Disrupt. Although the Shapley value and the SCRB principle exhibit superior fairness and stabilization to the other methods, only the SCRB principle may maintains full cooperation among regions over the long term. The results provide clear empirical evidence that regional gain allocation may affect the sustainability of cooperation. Therefore, it is implied that not only the cost-effectiveness but also the long-term sustainability should be considered while formulating and implementing environmental policies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2016.04.015DOI Listing

Publication Analysis

Top Keywords

river basin
12
scrb principle
12
transboundary river
8
cost allocation
8
cooperation regions
8
water pollutant
8
allocation schemes
8
incremental gain
8
regions
5
pollution control
4

Similar Publications

Comparative analysis of machine learning based dissolved oxygen predictions in the Yellow River Basin: The role of diverse environmental predictors.

J Environ Manage

September 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

Dissolved oxygen (DO) is a key water quality indicator reflecting river health. Modeling and understanding the spatiotemporal dynamics of DO and its influencing factors are crucial for effective river management. Machine learning (ML) models have gained popularity in water quality prediction; however, their accuracy strongly depends on the predictor variables.

View Article and Find Full Text PDF

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

The Ordos Basin's Hangjinqi Shiligahan west zone Xiashihezi Formation 1 Member gas reservoir exhibits significant exploration and development potential. However, its sedimentation and reservoir characteristics are poorly understood. To address this, geological, seismic, macroscopic, and microscopic methods are combined.

View Article and Find Full Text PDF

Catastrophic climate events such as floods significantly impact infrastructure, agriculture, and the economy. The lower Gandak River basin in India is particularly flood-prone, with Bihar experiencing annual losses of life and property due to massive flooding. Identifying flood-prone zones in this region is essential.

View Article and Find Full Text PDF

Background: Nepal is highly affected by climate change, experiencing glacier melting, untimely rainfall, floods, landslides, forest fires, and droughts, which collectively impact over 10 million people. There is a larger impact of climate change on human health, but its impact on women's and girls' sexual and reproductive health and rights is yet to be explored. Thus, this study aims to understand the linkages between climate change and the unique impact on gender and sexual, and reproductive health and rights (SRHR).

View Article and Find Full Text PDF