98%
921
2 minutes
20
It is of great interest to develop strategic methods to enable chemicals' metabolites to be accurately and rapidly screened and identified. To screen and identify a category of metabolites with distinct isotopic distribution, this study proposed a generic strategy using in silico metabolite prediction plus accurate-mass-based isotopic pattern recognition (AMBIPR) and library identification on the data acquired via the data dependent MS/MS scan of LC-Q Exactive Orbitrap mass spectrometry. The proposed method was evaluated by the analysis of flurochloridone (FLC) metabolites in rat urine sample collected from toxicity tests. Different from the traditional isotopic pattern recognition (IPR) approach, AMBIPR here was performed based on the potential metabolites predicted via in silico metabolite prediction tools. Thus, the AMBIPR treated FLC data was only associated with FLC metabolites, consequently not only avoiding great efforts made to remove FLC-unrelated information and reveal FLC metabolites, but also increasing the percent of positive hits. Among the FLC metabolite peaks screened using AMBIPR, 87% of them (corresponding 97 metabolites and 49 biotransformation) were successfully identified via multiple MS identification techniques packaged in an established FLC's metabolites library based on Mass Frontier. Noteworthy, 34 metabolites (89%) were identified without distinct naturally isotopic distribution. The universal strategic approach based on background subtraction (BS) and mass defect filtering (MDF) was used to evaluate the AMBIPR and no more false positive and negative metabolites were detected. Furthermore, our results revealed that AMBIPR is very effective, inherently sensitive and accurate, and is easily automated for the rapidly screening and profiling chemicals related metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2016.03.080 | DOI Listing |
Rev Argent Microbiol
September 2025
IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.
Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U
Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Anhui Provincial Key Laboratory of Biological Control, Anhui Agricultural University, Hefei 230036, China. Electronic address:
Microbial consortia, involving two or more microorganisms, have been explored for pest management purposes, despite concerns regarding competitive exclusion among entomopathogenic fungi that may undermine synergistic effects. However, the precise molecular mechanisms governing entomopathogen competition in vivo remain inadequately elucidated. Here, we investigate competitive exclusion dynamics between two prominent entomopathogens, Metarhizium robertsii and Beauveria bassiana.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China. Electronic address:
The four-and-a-half LIM domain protein 2 (FHL2) is a conserved transcriptional co-regulator critical for vertebrate development and metabolism, yet its roles in arthropods remain poorly understood. Here, we report the functional characterization of LmFHL2 in the migratory locust Locusta migratoria, a devastating pest reliant on precise molting cycles for growth and swarming. Phylogenetic and expression analyses revealed high conservation of LmFHL2 across insects, with predominant expression in integument and gut tissues.
View Article and Find Full Text PDF