Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A series of 11 different boron-dipyrromethene (BODIPY) dimers is carefully examined by means of ab initio and Tamm-Dancoff approximated density functional theory methods. Vertical and 0-0 excitation energies along with the tetraradical character of these dimers are determined. Possible application of a series of linked dimers for photodynamic therapy (PDT) was investigated through computing their excitation energies, spin-orbit coupling matrix elements, and singlet-triplet energy gaps. Finally through a systematic investigation of a series of 36 different BODIPY and aza-BODIPY dimers, a new class of near-IR heavy atom free photosensitizers for PDT action is introduced.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.6b02883DOI Listing

Publication Analysis

Top Keywords

heavy atom
8
atom free
8
photodynamic therapy
8
excitation energies
8
dimers
5
local cc2
4
cc2 tda-dft
4
tda-dft double
4
double hybrid
4
hybrid study
4

Similar Publications

Quantum mechanical tunnelling significantly influences the reactivity of strained ring systems, yet strategies for controlling such reactivity remain largely unexplored. Here, we identify geminal hyperconjugation, , electron delocalization between σ-bonds attached to a common atom, as a decisive electronic factor in governing heavy-atom tunnelling reactions involving three-membered rings. We illustrate this through a case study of the oxepin (1') ⇌ benzene oxide (1) equilibrium, recently shown to undergo solvent-controlled tunnelling at 3 K (, 2020, , 20318).

View Article and Find Full Text PDF

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF

Photosensitization has emerged as a versatile tool to facilitate access to excited states under mild conditions, allowing for efficient and selective photochemical transformations. Herein, we report a very simple molecule, coronene bisimide (CBI), as a potent visible-light photosensitizer featuring a high extinction coefficient with a broadband absorption spanning from ultraviolet to green region of the visible spectrum, along with a long-lived triplet state generated via efficient intersystem crossing (ISC). Utilizing the triplet-triplet energy transfer (TTEnT) strategy, CBI catalyzes diverse reactions under green light irradiation.

View Article and Find Full Text PDF

Electron transfer and intersystem crossing in Bodipy dimers: a study of their photophysical properties using steady state and transient optical and electron paramagnetic resonance spectroscopic methods.

Phys Chem Chem Phys

September 2025

Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China.

The photophysical properties of two new Bodipy dimers are investigated using a variety of techniques, including steady-state UV-vis absorption and fluorescence spectroscopy, femtosecond and nanosecond transient absorption spectroscopy, and pulse laser-excited time-resolved electron paramagnetic resonance (TREPR) spectroscopic methods. The dimers are formed by the Bodipy units rigidly linked by the orthogonal phenylene bridge. One of the dimers is composed of iodinated units, and the other is not.

View Article and Find Full Text PDF

Understanding the kinetics of reactions in biosynthetic pathways requires accounting for the contribution of quantum mechanical tunneling to the rates. Whereas hydrogen tunneling in biology is well established, the extent of heavy-atom tunneling in biochemical reactions has been very little studied. We report computational results (M06-2X/cc-pVDZ) on rate constants for electrocyclic ring closures and [3,3] sigmatropic shifts, processes dominated by heavy-atom motions, that are proposed steps in the biosynthesis of four representative natural products.

View Article and Find Full Text PDF