98%
921
2 minutes
20
PIG3 is a target of the tumor suppressor p53 and is thought to be involved in p53-mediated cell apoptosis. Although PIG3 is similar to oxidoreductases involved in generating ROS, whether PIG3 would regulate HIF-1α was never characterized directly. Here we demonstrated that knockdown of PIG3 by transfecting with specific siRNA could increase the expression of HIF-1α in several human cancer cell lines, including CAKI, FTC-133 and A549. It indicates that PIG3 may be involved in the regulation of HIF-1α. Furthermore, we revealed that PIG3-siliencing increased HIF-1α protein level through promoting its protein biosynthesis via mTOR pathway. In addition, the effect of PIG3 on the production of HIF-1α was further related to VEGF secretion and cell migration. PIG3-downregulation increased the secretion of VEGF and promoted the migration of renal cancer cells obviously. Taken together, these data suggest that PIG3 was involved in HIF-1α regulation, and reveal a novel signaling pathway of PIG3/HIF-1α in the regulation of cell migration in renal cell carcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053640 | PMC |
http://dx.doi.org/10.18632/oncotarget.8401 | DOI Listing |
Clin J Am Soc Nephrol
September 2025
Kidney Division, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Kidney Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, China.
Background: The Therapeutic Effects of Steroids in IgA Nephropathy Global (TESTING) trial demonstrated that glucocorticoid therapy reduced proteinuria and improved kidney outcomes in patients with Immunoglobulin A Nephropathy (IgAN). Galactose-deficient IgA1 (Gd-IgA1) plays a central role in IgAN pathogenesis by promoting immune complex formation. However, the effects of glucocorticoid on pathogenic IgA levels remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240.
Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.
Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.
View Article and Find Full Text PDFArch Pharm Res
September 2025
Department of Biosciences, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, 700109, India.
Bacoside A (BCA), a triterpenoid saponin isolated from Bacopa monnieri, exhibits diverse pharmacological properties, including neuroprotective, hepatoprotective, anti-stress, anti-inflammatory, and anti-ulcer effects. In the present study, BCA demonstrates pronounced anticancer activity against K562 chronic myelogenous leukemia (CML) cells by modulating autophagy-apoptosis dynamics. BCA induces dose- and time-dependent cytotoxicity in K562 cells while sparing normal human peripheral blood mononuclear cells (hPBMCs) and Vero cells, indicating therapeutic selectivity.
View Article and Find Full Text PDF