Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arrestins are cytosolic proteins that regulate G-protein-coupled receptor (GPCR) desensitization, internalization, trafficking and signalling. Arrestin recruitment uncouples GPCRs from heterotrimeric G proteins, and targets the proteins for internalization via clathrin-coated pits. Arrestins also function as ligand-regulated scaffolds that recruit multiple non-G-protein effectors into GPCR-based 'signalsomes'. Although the dominant function(s) of arrestins vary between receptors, the mechanism whereby different GPCRs specify these divergent functions is unclear. Using a panel of intramolecular fluorescein arsenical hairpin (FlAsH) bioluminescence resonance energy transfer (BRET) reporters to monitor conformational changes in β-arrestin2, here we show that GPCRs impose distinctive arrestin 'conformational signatures' that reflect the stability of the receptor-arrestin complex and role of β-arrestin2 in activating or dampening downstream signalling events. The predictive value of these signatures extends to structurally distinct ligands activating the same GPCR, such that the innate properties of the ligand are reflected as changes in β-arrestin2 conformation. Our findings demonstrate that information about ligand-receptor conformation is encoded within the population average β-arrestin2 conformation, and provide insight into how different GPCRs can use a common effector for different purposes. This approach may have application in the characterization and development of functionally selective GPCR ligands and in identifying factors that dictate arrestin conformation and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973468PMC
http://dx.doi.org/10.1038/nature17154DOI Listing

Publication Analysis

Top Keywords

trafficking signalling
8
functions arrestins
8
changes β-arrestin2
8
β-arrestin2 conformation
8
β-arrestin2
5
conformational signature
4
signature β-arrestin2
4
β-arrestin2 predicts
4
predicts trafficking
4
signalling functions
4

Similar Publications

Alterations in the structure of the Golgi apparatus play a pivotal role in cancer progression and invasion. A better understanding of how Golgi morphology regulates the metastatic potential of cancer cells could help identify potential treatment strategies. In this study, we investigated how specific structural variations in the Golgi, particularly fragmentation and condensation, influence the malignancy of gastric cancer using human cell lines, xenograft mouse models, and human patient tissue samples.

View Article and Find Full Text PDF

, a macrophage-residing parasite, expresses virulence factors that intercept macrophage signaling and inflicts leishmaniasis. Recently described virulence factors- eEF-1α (eukaryotic elongation factor), LmjF_36_3850 ( F_36_3850), LdTyrPIP_22 (LDBPK_220120.1) and LmjMAPK ( mitogen activated protein kinase)-4/12 selectively modulate the activities of kinases, phosphatases and metabolism of phosphatidylinositol influencing the infection outcome.

View Article and Find Full Text PDF

The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities.

View Article and Find Full Text PDF

Ferlins are vesicle trafficking proteins composed of folded C2 domains conjugated by linkers which are largely disordered. Although a role for the C2 domains as calcium sensors has been established it remains unclear whether the linkers function beyond acting as passive spacers. We examined the C2A-C2B linker sequences of vertebrate ferlins and found both putative short linear motifs (SLiMs) as well as membrane binding sequences for members of the protein family.

View Article and Find Full Text PDF

Targeted delivery and pro-apoptotic efficacy of an Epstein-Barr virus nuclear antigen 1-specific affibody in EBV-infected cells in vitro.

Int J Biol Macromol

September 2025

Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. Electronic address:

Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) sustains viral latency and drives oncogenesis in EBV-driven malignancies such as nasopharyngeal carcinoma and lymphomas. The dimerization of EBNA1 acts as an indispensable molecular switch governing EBV latency and oncogenesis. Disruption of EBNA1 dimerization is a promising strategy, but existing small-molecule inhibitors lack sufficient specificity.

View Article and Find Full Text PDF