The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% V600 mutations and ≈30% mutations). While drugs targeting the MAPK pathway have yielded success in V600 mutant melanoma patients, such therapies have been ineffective in patients with mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of mutant melanoma cell lines.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) that target programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have shown modest activity as monotherapies for the treatment of ovarian cancer (OC). The rationale for using these therapies in combination with poly (ADP-ribose) polymerase inhibitors (PARP-Is) has been described, and their in vivo application will benefit from ex vivo platforms that aid in the prediction of patient response or resistance to therapy. This study examined the effectiveness of detecting patient-specific immune-related activity in OC using three-dimensional (3D) spheroids.
View Article and Find Full Text PDFHDL normally transports about 50-70% of plasma sphingosine 1-phosphate (S1P), and the S1P in HDL reportedly mediates several HDL-associated biological effects and signaling pathways. The HDL receptor, SR-BI, as well as the cell surface receptors for S1P (S1PRs) may be involved partially and/or completely in these HDL-induced processes. Here we investigate the nature of the HDL-stimulated interaction between the HDL receptor, SR-BI, and S1PR1 using a protein-fragment complementation assay and confocal microscopy.
View Article and Find Full Text PDFMelanoma is the most dangerous form of skin cancer with the majority of deaths arising from metastatic disease. Evidence implicates Rho-activated gene transcription in melanoma metastasis mediated by the nuclear localization of the transcriptional coactivator, myocardin-related transcription factor (MRTF). Here, we highlight a role for Rho and MRTF signaling and its reversal by pharmacologic inhibition using in vitro and in vivo models of human melanoma growth and metastasis.
View Article and Find Full Text PDFArrestins are cytosolic proteins that regulate G-protein-coupled receptor (GPCR) desensitization, internalization, trafficking and signalling. Arrestin recruitment uncouples GPCRs from heterotrimeric G proteins, and targets the proteins for internalization via clathrin-coated pits. Arrestins also function as ligand-regulated scaffolds that recruit multiple non-G-protein effectors into GPCR-based 'signalsomes'.
View Article and Find Full Text PDFHeterotrimeric G-proteins are the immediate downstream effectors of G-protein coupled receptors (GPCRs). Endogenous protein guanine nucleotide dissociation inhibitors (GDIs) like AGS3/4 and RGS12/14 function through GPR/Goloco GDI domains. Extensive characterization of GPR domain peptides indicate they function as selective GDIs for Gαi by competing for the GPCR and Gβγ and preventing GDP release.
View Article and Find Full Text PDFBackground: Understanding the integration of hormone signaling and how it impacts oncogenesis is critical for improved cancer treatments. Here we elucidate GNAI2 message alterations in ovarian cancer (OvCa). GNAI2 is a heterotrimeric G protein which couples cell surface hormone receptors to intracellular enzymes, and is best characterized for its direct role in regulating cAMP response element-binding protein (CREB) function by decreasing intracellular cAMP through inhibiting adenylyl cyclase.
View Article and Find Full Text PDFThe renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
June 2013
Our growing appreciation of the pluridimensionality of G protein-coupled receptor (GPCR) signaling, combined with the phenomenon of orthosteric ligand "bias", has created the possibility of drugs that selectively modulate different aspects of GPCR function for therapeutic benefit. When viewed from the short-term perspective, e.g.
View Article and Find Full Text PDFRecent advances in our understanding of the pluridimensional nature of GPCR signaling have provided new insights into how orthosteric ligands regulate receptors, and how the phenomenon of functional selectivity or ligand "bias" might be exploited in pharmaceutical design. In contrast to the predictions of simple two-state models of GPCR function, where ligands affect all aspects of GPCR signaling proportionally, current models assume that receptors exist in multiple "active" conformations that differ in their ability to couple to different downstream effectors, and that structurally distinct ligands can bias signaling by preferentially stabilizing different active states. The type 1 parathyroid hormone receptor (PTH(1)R) offers unique insight into both the opportunities and challenges of exploiting ligand bias in pharmaceutical design, not only because numerous "biased" PTH analogs have been described but also because many of them have been characterized for biological activity in vivo.
View Article and Find Full Text PDFWe report the development of a method to analyze receptor and β-arrestin2 mobilization between Class A and B GPCRs via time-resolved fluorescent microscopy coupled with semiautomated high-content multiparametric analysis. Using transiently expressed, tagged β2-adrenergic receptor (β₂-AR) or parathyroid hormone receptor type 1 (PTH₁R), we quantified trafficking of the receptors along with the mobilization and colocalization of coexpressed tagged β-arrestin2. This classification system allows for exclusion of cells with nonoptimal characteristics and calculation of multiple morphological and spatial parameters including receptor endosome formation, β-arrestin mobilization, colocalization, areas, and shape.
View Article and Find Full Text PDF