Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Carbohydrate sulfotransferases 11-13 (CHST11-13), that catalyze the transfer of sulfate to position 4 of the GalNAc residue of chondroitin, have been implicated in various diseases.

Aim: This study aimed to clarify the association of CHST11-13 expression with metastasis and drug sensitivity in hepatocellular carcinoma (HCC) cells.

Methods: We measured the levels of CHST11 and CHST13 in a series of HCC cells using real-time PCR and Western blotting. After RNAi and forced expression treatment of CHST11 and CHST13 in MHCC97L and MHCC97H cells, metastatic potential and drug sensitivity of the two cells were investigated with ECM invasion assay, drug sensitivity assay, and in vivo antitumor activity assay. By real-time PCR and Western blotting, we explored the possible impacts of these two genes on mitogen-activated protein kinase (MAPK) signal pathway. MAPK pathway was blocked by PD98059 or SP600125 to elucidate the effects of MAPK pathway on metastasis and chemosensitivity.

Results: Significantly reduced levels of CHST11 and CHST13 were observed in highly invasive MHCC97H cells compared with those of MHCC97L cell line with low metastatic potential. Decreased or forced expression of CHST11 and CHST13 altered metastatic potential and drug sensitivity of MHCC97L and MHCC97H cells. Remarkable alteration of MAPK activity was shown in two HCC cells with genetic manipulation. Conversely, pharmacologic inhibition of the MAPK pathway suppressed invasive potential and rescued drug sensitivity of MHCC97H cells.

Conclusions: Our results have demonstrated that CHST11 and CHST13 negatively modulate metastasis and drug resistance of HCC cells probably via oncogenic MAPK signal pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10620-016-4114-5DOI Listing

Publication Analysis

Top Keywords

drug sensitivity
20
chst11 chst13
20
hcc cells
12
mhcc97h cells
12
metastatic potential
12
mapk pathway
12
hepatocellular carcinoma
8
cells
8
mitogen-activated protein
8
protein kinase
8

Similar Publications

Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.

Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.

View Article and Find Full Text PDF

Prevalence and molecular characterization of methicillin-resistant Staphylococcus aureus (MRSA) in acute and chronic sinusitis.

Mol Biol Rep

September 2025

Department of Medical Lab Technology, College of health and medical technology, Sulaimani Polytechnic University, Sulaimani, 46001, Kurdistan Region, Iraq.

Background: Sinusitis is a common respiratory infection increasingly associated with antibiotic-resistant Staphylococcus aureus, posing significant treatment challenges. The emergence of methicillin-resistant S. aureus (MRSA) in sinus infections necessitates comprehensive profiling of resistance patterns to guide effective therapy.

View Article and Find Full Text PDF

Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF

Background: Plasma p-tau181 has proven to be a promising diagnostic and prognostic tool in the earliest phases of Alzheimer's disease (AD). We aimed to evaluate the prognostic role of p-tau181 in predicting conversion to AD dementia and worsening in cognition in mild cognitive impairment (MCI) and subjective cognitive decline (SCD).

Methods: We consecutively enrolled 163 patients (50 SCD, 70 MCI, and 43 AD-demented (AD-d)), who underwent plasma p-tau181 analysis with the Simoa assay.

View Article and Find Full Text PDF