98%
921
2 minutes
20
Straw incorporation is significant for straw reduction and reutilization, and is clearly required in the twelfth five-year-plan for national economic and social development of the People's Republic of China. The incorporated straw will naturally decompose and release the component of dissolved organic matter (DOM). At present, it lacks the research on straw humification behavior controlled by environmental factors and complexation effect between humification component and metal ions with fluorescence spectrometry in the representative region of loess. The fluorescence spectrometry was used to reveal the 3D-EEMs characteristics of DOM affected by temperatures and lead ions in the straw humification process, and the modified Stern-Volmer equation and Van't Hoff equation were applied to indicate the complexation parameters and thermodynamic constants between lead ions and DOM. The results showed: the humification temperatures affected little on fluorescence peaks of DOM and no peaks were obviously found to appear or disappear from the 3D-EEMs results. The fluorescence intensity decreased gradually at higher temperatures and in the presence of lead ions, the quenching effect might work in the process. The binding ability was more significant between lead ions and visible fulvic-like component shown from modified Stern-Volmer equation, and the values of ƒ revealed the complexation effect of lead ions and functional groups in DOM. Static quenching was the primary mechanism during the reaction process. The constants in Van't Hoff equation suggested the reaction was spontaneous and endothermic, and the disordered degree and the complexity were relatively low in the reaction system. The 3D-EEMs were acceptable to illustrate the variation of DOM characteristics under different temperatures and in the presence of lead ions in the straw humification process.
Download full-text PDF |
Source |
---|
Bioresour Technol
September 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Zibo Engineering Research Center for Bio-based New Materials, Zibo 255000, China. Electronic address:
Tungsten disulfide (WS), a two-dimensional adsorbent material, has garnered great attention in removing lead ions (Pb) from water due to their extensive exposed adsorption sites. However, WS nanosheets inevitably agglomerated and stacked during the preparation and adsorption process, leading to reduced adsorption efficiency. Current method of enhancing WS dispersion is mainly blending with synthetic polymers, but these synthetic polymers themselves do not possess adsorption properties, resulting adsorption effect enhancement poorly.
View Article and Find Full Text PDFChemosphere
September 2025
Department of Materials Design and Innovation, University at Buffalo, NY, 14260, USA. Electronic address:
Bioremediation offers a sustainable strategy for mitigating heavy metal contamination in soil, but is often constrained by slow removal kinetics, limited uptake efficiency, and high implementation costs. This study investigates dried mycelium membranes, rich in surface-bound proteins and high surface area, as a promising biosorbent for in situ Pb(II) remediation in urban soils. Untreated mycelium membranes buried in soil achieved Pb(II) removal efficiencies of ∼70 % and ∼40 % at initial lead soil concentrations of 100 mg/kg and 1500 mg/kg, respectively, within eight days.
View Article and Find Full Text PDFAdv Mater
September 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Sequential deposition technique is widely used to fabricate perovskite films with large grain size in perovskite solar cells (PSCs). Residual lead halide (PbI) in the perovskite film tends to be decomposed into metallic lead (Pb) under long-term heating or light soaking. Here, a chiral levetiracetam (LEV) dopant containing α-amide and pyrrolidone groups is introduced into the PbI precursor solution.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDFJ Contam Hydrol
September 2025
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, 119071 Moscow, Russia.
Lead is an extremely hazardous pollutant that poses a severe threat to the ecosystem. It enters the atmosphere in the form of nano- and microparticles and is then carried by wind and water. These particles easily dissolve in water, turning into ions which are easily absorbed by living organisms.
View Article and Find Full Text PDF