3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

J Mech Behav Biomed Mater

Glass Technology Services Ltd., 9 Churchhill Way, Chapeltown, Sheffield S35 2PY, UK.

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2016.02.023DOI Listing

Publication Analysis

Top Keywords

laser cladding
8
cladding bioactive
8
bioactive glass
8
glass coatings
8
consecutive temperature
8
analysis thermal
4
thermal stress
4
stress evolution
4
laser
4
evolution laser
4

Similar Publications

Feature tracking is essential for welding crawler robots' trajectory planning. As welding often occurs in dark environments like pipelines or ship hulls, the system requires low-light image capture for laser tracking. However, such images typically have poor brightness and contrast, degrading both weld seam feature extraction and trajectory anomaly detection accuracy.

View Article and Find Full Text PDF

This study addresses the critical challenges of interfacial stress mismatch, fiber degradation, and unstable clad geometry in manufacturing continuous carbon fiber-reinforced aluminum composites (Cf/Al) via laser cladding, driven by rapid thermal gradients. A dual-ellipsoid heat source-based thermoelastic-plastic finite element model was developed in Abaqus, integrating phase-dependent material properties and latent heat effects to simulate multi-physics interactions during single-track deposition, resolving transient temperature fields peaking at 1265 °C, and residual stresses across uncoated and Ni-coated fiber configurations. The work identifies an optimal parameter window characterized by laser power ranging from 700 to 800 W, scan speed of 2 mm/s, and spot radius of 3 mm that minimizes thermal distortion below 5% through gradient-controlled energy delivery, while quantitatively demonstrating nickel interlayers' dual protective role in achieving 42% reduction in fiber degradation at 1200 °C compared to uncoated systems and enhancing interfacial load transfer efficiency by 34.

View Article and Find Full Text PDF

Aeroengine and powertrain components operate under elevated temperatures and cyclic loading, making them prone to fatigue failure. Laser cladding (LC) has emerged as a sustainable repair technology due to its strong metallurgical bonding and flexible processing. However, rapid thermal cycles during LC can introduce defects such as pores, cracks, and inclusions that impair fatigue performance.

View Article and Find Full Text PDF

We report on the development of a cladding-pumped ultra-broadband optical amplifier for a spectral region of 1260-1480 nm using a Bi-doped fiber (BDF) with heterogeneous core formed by combination of PO- and GeO-containing glass layers. This BDF design ensures a favorable local environment for the effective formation process of BACs associated with P and Si atoms. The BDF amplifier (BDFA) pumped into the cladding by multi-mode laser diodes at 793 and 808 nm is characterized by a peak gain of ≈24 dB, a minimum noise figure of ≈6 dB, and a bandwidth of ≈160 nm at a gain level of 20 dB.

View Article and Find Full Text PDF

In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which allowed the computation of the distribution of residual stresses. The results show that the isotherms in the simulation of the temperature field are elliptical in shape, and that the isotherms in front of the moving heat source are dense with a larger temperature gradient, while the isotherms behind the heat source are sparse with a smaller temperature gradient.

View Article and Find Full Text PDF