Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Mutations in the gene encoding filaggrin (FLG), an epidermal structural protein, are the strongest risk factor identified for the development of atopic dermatitis (AD). Up to 50% of patients with moderate-to-severe AD in European populations have FLG-null alleles compared with a general population frequency of 7% to 10%.

Objective: This study aimed to investigate the relationship between FLG-null mutations and epidermal antigen-presenting cell (APC) maturation in subjects with and without AD. Additionally, we investigated whether the cis isomer of urocanic acid (UCA), a filaggrin breakdown product, exerts immunomodulatory effects on dendritic cells.

Methods: Epidermal APCs from nonlesional skin were assessed by using flow cytometry (n = 27) and confocal microscopy (n = 16). Monocyte-derived dendritic cells from healthy volunteers were used to assess the effects of cis- and trans-UCA on dendritic cell phenotype by using flow cytometry (n = 11).

Results: Epidermal APCs from FLG-null subjects had increased CD11c expression. Confocal microscopy confirmed this and additionally revealed an increased number of epidermal CD83(+) Langerhans cells in FLG-null subjects. In vitro differentiation in the presence of cis-UCA significantly reduced costimulatory molecule expression on monocyte-derived dendritic cells from healthy volunteers and increased their ability to induce a regulatory T-cell phenotype in mixed lymphocyte reactions.

Conclusions: We show that subjects with FLG-null mutations have more mature Langerhans cells in nonlesional skin irrespective of whether they have AD. We also demonstrate that cis-UCA reduces maturation of dendritic cells and increases their capacity to induce regulatory T cells, suggesting a novel link between filaggrin deficiency and immune dysregulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422581PMC
http://dx.doi.org/10.1016/j.jaci.2015.11.040DOI Listing

Publication Analysis

Top Keywords

langerhans cells
12
dendritic cells
12
flg-null mutations
8
epidermal apcs
8
nonlesional skin
8
flow cytometry
8
confocal microscopy
8
monocyte-derived dendritic
8
cells healthy
8
healthy volunteers
8

Similar Publications

Langerhans cell histiocytosis is a relatively rare disease. This article explores the clinicopathological features, differential diagnosis, and biological characteristics of Langerhans cell histiocytosis. A comprehensive analysis was conducted on the clinical data, clinical characteristics, histological observations, immunohistochemical studies, pathological features, treatment, and prognosis of one case of Langerhans cell histiocytosis occurring in the temporal bone, to enhance clinical understanding of this disease.

View Article and Find Full Text PDF

Pancreatic Islet Cell Hormones: Secretion, Function, and Diabetes Therapy.

MedComm (2020)

September 2025

Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital Sichuan University Chen

The pancreatic islets of Langerhans, which are composed of α, β, δ, ε, and PP cells, orchestrate systemic glucose homeostasis through tightly regulated hormone secretion. Although the precise mechanisms involving β cells in the onset and progression of diabetes have been elucidated and insulin replacement therapy remains the primary treatment modality, the regulatory processes, functions, and specific roles of other pancreatic islet hormones in diabetes continue to be the subject of ongoing investigation. At present, a comprehensive review of the secretion and regulation of pancreatic islet cell hormones as well as the related mechanisms of diabetes is lacking.

View Article and Find Full Text PDF

TLR5 influences the development of type 1 diabetes.

BMJ Open Diabetes Res Care

September 2025

Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg Campus, Frederiksberg, Denmark.

Unlabelled: In mammalian and human life, it is important that the immune system defends against microorganisms. Although there is a huge overlap, innate cells are good against bacteria, whereas T cells are good against viruses, mainly because of antibody production via T helper and B lymphocytes. Toll-like receptor 5 (TLR5) is a regulator; when it is highly expressed, T cells are inhibited, and innate cells are favored.

View Article and Find Full Text PDF

From β soloist to endocrine symphony: Subtype-complete islets conduct glucose harmony.

Cell Stem Cell

September 2025

Life Sciences Institute, Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada. Elec

While current stem cell differentiation protocols generate β cell-enriched islets that reverse hyperglycemia post-implantation, they can cause hypoglycemia. Meng et al. reconstruct endocrine subtype-complete islets, which restore counterregulatory responses and protect against hypoglycemia in diabetic mice, highlighting the importance of endocrine diversity in designing physiologically regulated cell therapies for diabetes.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of pancreatic beta cells, resulting in lifelong insulin therapy that falls short of a true cure. Beta cell replacement therapies hold immense potential to restore natural insulin production, but they face significant hurdles such as immune rejection, limited donor availability, and long-term graft survival. In this review, we explore cutting-edge advances in genetic engineering, biomaterials, and machine learning approaches designed to overcome these barriers and enhance the clinical applicability of beta cell therapies.

View Article and Find Full Text PDF