98%
921
2 minutes
20
Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850290 | PMC |
http://dx.doi.org/10.1074/jbc.M115.699470 | DOI Listing |
Leukemia
September 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
Tyrosine kinase inhibitors (TKIs) only partially inhibit the growth of Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph B-ALL) cells, and often lead to rapid relapse. Therefore, it is essential to elucidate the mechanisms of resistance and develop novel treatment strategies. Histone deacetylases (HDACs) are often dysregulated in hematological malignancies, and many HDAC inhibitors have shown potent antitumor activities.
View Article and Find Full Text PDFBiotechnol Prog
August 2025
Merck & Co., Inc., Analytical Research and Development, Rahway, New Jersey, USA.
Hydroxylysine (Hyl) is a post-translational hydroxyl modification of lysine that is not commonly observed at very high levels and thus is not usually considered a product quality attribute (PQA). Post-translation modifications (PTMs) are considered potential PQAs when elevated levels are observed - requiring monitoring and investigation. In a recent monoclonal antibody expression using Media A, Hyl levels were observed at ~20%-35%.
View Article and Find Full Text PDFCell Commun Signal
August 2025
College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
Hypoxia-inducible factor 1α (HIF-1α) is a master regulator of cellular adaptation to hypoxia. Although prolyl hydroxylation-mediated degradation via the von Hippel-Lindau (VHL) ubiquitination complex is a well-established regulatory mechanism, the role of lactate-induced posttranslational modifications in HIF-1α stabilization remains incompletely understood. Here, we demonstrate that lactate induces lysine lactylation of HIF-1α at distinct residues across species-specifically, K644 in mice and K12 in humans and pigs-to increase protein stability by impairing VHL recognition.
View Article and Find Full Text PDFSci Rep
July 2025
Department of Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, 10691, Sweden.
Titanium binding peptides are useful tools for material functionalization in both biomedical and nanotechnology applications because of their ability to attach selectively to titanium surfaces. In this work, we investigate the adsorption behavior of a series of 360 six amino acids long peptides obtained by permutations of titanium binding peptide residues, RKLPDA, on hydroxylated anatase [Formula: see text] (101) surfaces using extensive atomistic molecular dynamics (MD) simulations, with the purpose identifying sequences with stronger adsorption affinity to titanium. Our results show that small changes in amino acid order can significantly affect both binding strength and structural conformations.
View Article and Find Full Text PDFMatrix Biol
September 2025
Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland. Electronic address:
Collagen IV, an essential and evolutionarily conserved component of basement membranes, is one of the most extensively post-translationally modified proteins. Despite substantial research on fibrillar collagen biosynthesis, our understanding of collagen IV biosynthesis, including its post-translational modifications (PTMs), remains limited. Most PTMs occur intracellularly, primarily within the endoplasmic reticulum (ER).
View Article and Find Full Text PDF