98%
921
2 minutes
20
Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4932386 | DOI Listing |
Mol Pharm
September 2025
Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, U.K.
We built a custom device to subject an antibody fragment A33 Fab to controlled stress conditions that combined pH, temperature, agitation, and LED-based light exposure in polypropylene microplates; to simulate the real-world challenges it may encounter during storage and transportation and to evaluate the key degradation routes in Fab formulations. We also explored the addition of Tween 80 as a surfactant and the impact of plate surface siliconisation. Monomer loss and fragmentation was monitored by size-exclusion chromatography, aggregate formation determined by changes in hydrodynamic radius in DLS, and chemical modifications identified through intact mass analysis by LC-MS, and N-terminal sequencing.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Engineering & Technology, National Textile University, 37610, Faisalabad, Pakistan.
The sanitary napkin market is flourishing continuously due to increasing self-hygiene awareness in females. The commercially available sanitary napkins are mostly synthesized using petroleum based raw materials which are non-biodegradable in nature. With the growing global trend towards the adoption of eco-friendly, biodegradable and renewable raw materials, researchers are trying to design and manufacture sanitary napkins with natural, bio-based materials ensuring customer's comfort and healthcare.
View Article and Find Full Text PDFBiomater Adv
September 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2025
Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada. Electronic address:
This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China..
Spinel lithium manganate (LiMnO) is considered a highly promising cobalt-free cathode material for lithium-ion batteries (LIBs) owing to its three-dimensional Li-ion diffusion channels and the abundance of manganese. However, its practical applications are limited due to the substantial capacity deterioration induced by the Jahn-Teller effect and interfacial instability with the organic electrolyte. In this work, we propose a polyanion-based surface engineering strategy that enables simultaneous doping and the formation of a protective coating on the LiMnO cathode.
View Article and Find Full Text PDF