Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers.

Lab Chip

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,

Published: April 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report a magnetically transportable microlaser with cholesteric liquid crystal (CLC) core-shell structure, operating in band-edge mode. The dye doped CLC shells as a water-in-oil-in-water (W/O/W) double emulsion were fabricated by microfluidics. Water-dispersible Fe3O4 magnetic nanoparticles were incorporated in the inner aqueous phase by taking advantage of the immiscibility with the middle CLC oil phase. The influence of temperature and shell thickness on laser properties was discussed in detail. The non-invasive manipulation of microlasers was realized under a magnetic field. The dependence of velocity on the viscosity of the carrying fluid and size of the core-shell structure was theoretically analyzed and experimentally investigated using a prototype electromagnetic platform. We also discussed the design principles for this type of DDCLC core-shell structure. Such magnetically transportable microlasers offer promise in in-channel illumination applications requiring active control inside micro-channels.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6lc00070cDOI Listing

Publication Analysis

Top Keywords

magnetically transportable
12
core-shell structure
12
cholesteric liquid
8
liquid crystal
8
transportable microlasers
8
microfluidic fabrication
4
fabrication cholesteric
4
core-shell
4
crystal core-shell
4
core-shell structures
4

Similar Publications

Introduction: Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a neuropsychiatric disorder with additional psychiatric features caused by NMDA-R immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF). This report presents the follow-up of a patient in whom we assumed mild NMDA-R encephalitis in the first psychotic episode.

Case Study: A patient with a prior episode of an acute polymorphic psychotic syndrome relapsed five and a half years later following a severe COVID-19 infection.

View Article and Find Full Text PDF

Gravitational and Magnetic Bi-Field Assisted One-Step Quick Fabrication of Implantable Micro Zn-Ion Hybrid Supercapacitor.

Adv Healthc Mater

September 2025

Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.

The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.

View Article and Find Full Text PDF

Glioblastoma is characterized by aggressive infiltration into surrounding brain tissue, hindering complete surgical resection and contributing to poor patient outcomes. Identifying tumor-specific invasion patterns is essential for advancing our understanding of glioblastoma progression and improving surgical and radiotherapeutic strategies. Here, we leverage in vivo dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to noninvasively quantify interstitial fluid velocity, direction, and diffusion within and around glioblastomas.

View Article and Find Full Text PDF

Aims: Skeletal muscle energetic augmentation might be a mechanism via which intravenous iron improves symptoms in heart failure, but no direct measurement of intrinsic mitochondrial function has been performed to support this notion. This molecular substudy of the FERRIC-HF II trial tested the hypothesis that ferric derisomaltose (FDI) would improve electron transport chain activity, given its high dependence on iron-sulfur clusters which facilitate electron transfer during oxidative phosphorylation.

Methods And Results: Vastus lateralis skeletal muscle biopsies were taken before and 2 weeks after randomization.

View Article and Find Full Text PDF

ObjectivesThe objective of this study was to evaluate the occurrence of voltage-gated potassium channel (VGKC) antibodies and the pattern of MRI changes in cats with complex partial seizures with orofacial involvement (CPSOFI), as well as to investigate whether there are factors influencing survival that could be used as prognostic markers in those cats.MethodsCats with CPSOFI were identified retrospectively. The following data were retrieved from the hospital database: signalment, age at first seizure and presentation, the presence of antibodies against VGKC (leucine-rich glioma inactivating factor 1 (LGI1), contactin-associated protein 2 (CASPR2)) and cerebrospinal fluid (CSF) analysis findings.

View Article and Find Full Text PDF