98%
921
2 minutes
20
Wnt5a, a non-canonical Wnt ligand critical for outflow tract (OFT) morphogenesis, is expressed specifically in second heart field (SHF) progenitors in the caudal splanchnic mesoderm (SpM) near the inflow tract (IFT). Using a conditional Wnt5a gain of function (GOF) allele and Islet1-Cre, we broadly over-expressed Wnt5a throughout the SHF lineage, including the entire SpM between the IFT and OFT. Wnt5a over-expression in Wnt5a null mutants can rescue the cell polarity and actin polymerization defects as well as severe SpM shortening, but fails to rescue OFT shortening. Moreover, Wnt5a over-expression in wild-type background is able to cause OFT shortening. We find that Wnt5a over-expression does not perturb SHF cell proliferation, apoptosis or differentiation, but affects the deployment of SHF cells by causing them to accumulate into a large bulge at the rostral SpM and fail to enter the OFT. Our immunostaining analyses suggest an inverse correlation between cell cohesion and Wnt5a level in the wild-type SpM. Ectopic Wnt5a expression in the rostral SpM of Wn5a-GOF mutants diminishes the upregulation of adherens junction; whereas loss of Wnt5a in Wnt5a null mutants causes premature increase in adherens junction level in the caudal SpM. Over-expression of mouse Wnt5a in Xenopus animal cap cells also reduces C-cadherin distribution on the plasma membrane without affecting its overall protein level, suggesting that Wnt5a may play an evolutionarily conserved role in controlling the cell surface level of cadherin to modulate cell cohesion during tissue morphogenesis. Collectively, our data indicate that restricted expression of Wnt5a in the caudal SpM is essential for normal OFT morphogenesis, and uncover a novel function of spatially regulated cell cohesion by Wnt5a in driving the deployment of SHF cells from the SpM into the OFT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814329 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2016.02.017 | DOI Listing |
OMICS
September 2025
Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India.
Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
August 2025
Department of Pharmaceutics, JSS College of Pharmacy, Mysuru, Karnataka, Pin Code, 570016, India.
Introduction: Stem cell therapies are advancing rapidly, requiring robust regulations to ensure safety and ethics. The UAE, with authorities like MOHAP, DOH, DHA, and DHCR, is actively involved in clinical research but faces regulatory inconsistencies across emirates. In contrast, the U.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
The ingression of neural crest cells from an ectodermal to a mesodermal layer is regulated by instructive, directional cues and potentially stochastic, biophysical parameters such as differential cell adhesion and tension heterogeneity. However, a cohesive framework in which to consider how various influences contribute to ingression remains elusive. Here, we observe the cell behaviors of the murine neural crest in three dimensions over time and apply a free energy framework to more wholly understand why cells ingress.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
September 2025
Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Union Medical Center, the First Affiliated Hospital of Nankai University, Nankai University, Tianjin, China.
The centrosomal protein of 44 kDa (CEP44) is essential for centriole duplication, centrosome cohesion, and spindle integrity. It localizes to the proximal end of centrioles and associates with spindle microtubules. Liquid-liquid phase separation (LLPS) is a process by which biomolecules undergo demixing into distinct liquid-like phases, facilitating the formation of cellular condensates such as the centrosome.
View Article and Find Full Text PDFBiol Open
September 2025
National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India.
Epithelial fusion is a fundamental morphogenetic process critical for the closure and compartmentalisation of developing organs. While widely studied in systems such as neural tube and palatal closure, the cellular transitions that enable fusion remain poorly understood. Here, we investigate epithelial fusion during chick otic vesicle (OV) closure and identify a transient population of cells at the epithelial interface that mediate this process.
View Article and Find Full Text PDF