98%
921
2 minutes
20
Tyrosine kinase and phosphatase are two important, antagonistic enzymes in organisms. Development of noninvasive approach for sensing their activity with high spatial and temporal resolution remains challenging. Herein, we rationally designed a hydrogelator Nap-Phe-Phe(CF3)-Glu-Tyr-Ile-OH (1a) whose supramolecular hydrogel (i.e., Gel 1a) can be subjected to tyrosine kinase-directed disassembly, and its phosphate precursor Nap-Phe-Phe(CF3)-Glu-Tyr(H2PO3)-Ile-OH (1b), which can be subjected to alkaline phosphatase (ALP)-instructed self-assembly to form supramolecular hydrogel Gel 1b, respectively. Mechanic properties and internal fibrous networks of the hydrogels were characterized with rheology and cryo transmission electron microscopy (cryo-TEM). Disassembly/self-assembly of their corresponding supramolecular hydrogels conferring respective "On/Off" (19)F NMR/MRI signals were employed to sense the activity of these two important enzymes in vitro and in cell lysates for the first time. We anticipate that our new (19)F NMR/magnetic resonance imaging (MRI) method would facilitate pharmaceutical researchers to screen new inhibitors for these two enzymes without steric hindrance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.6b00036 | DOI Listing |
J Magn Reson
February 2025
Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.
A new 3.2 mm H-F-X magic angle spinning dynamic nuclear polarization NMR (MAS DNP-NMR) probe was developed with a unique coil design with separate radiofrequency channels for H excitation and C or F detection to enable acquisition of H-F cross-polarization (CP) MAS experiments, direct-detected F spectra with proton decoupling, and acquisition on C with simultaneous double decoupling on the H and 19F channels as well as H-F-C double-CP experiments under low temperature MAS DNP conditions. We use these sequences to study AZD2811, which is an active pharmaceutical ingredient (API), in its pure dry state as well as in its corresponding drug delivery formulation consisting of drug-loaded polymeric nanoparticles (PNPs).
View Article and Find Full Text PDFMol Pharmacol
December 2023
Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (J.G.), CIBERSAM, Spain; Uni
G protein-coupled receptors (GPCRs) exhibit a wide range of pharmacological efficacies, yet the molecular mechanisms responsible for the differential efficacies in response to various ligands remain poorly understood. This lack of understanding has hindered the development of a solid foundation for establishing a mathematical model for signaling efficacy. However, recent progress has been made in delineating and quantifying receptor conformational states and associating function with these conformations.
View Article and Find Full Text PDFNanoscale
May 2023
School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum 695541, Kerala, India.
A supramolecular approach for the design of assembly-disassembly-driven F ON/OFF nanoparticles, triggered by specific molecular recognition, for the detection of DNA binding cancer biomarkers is reported. The key to our design strategy is the characteristic F NMR signal of the probe, which completely vanishes in the aggregated state due to the shortening of relaxation. However, molecular recognition of DNA by the cancer biomarkers through specific molecular recognition results in the disassembly of the nanoparticles, which causes the restoration of the characteristic F signal of the probe.
View Article and Find Full Text PDFDalton Trans
May 2021
Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli, Turkey.
The synthesis with full structural characterization including elemental analysis and 1H, 13C, 11B and 19F NMR, FT-IR and MALDI-TOF spectral data, along with the florescence sensing behavior of a new resorcin[4]arene cavitand 3 bearing multiple BODIPY sites achieved by the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) is being reported. The spatial orientation of multiple BODIPY-1,2,3-triazole arms based on the macrocyclic rigid core is of great interest since the resulting structure has been utilized as a fluorescent chemosensor for numerous metal cations. In particular, a remarkable decrease in the fluorescence emission towards Cu(ii) ions, i.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2020
Centre de Biophysique Moléculaire, Université d'Orléans, Rue Charles Sadron, F-45071 Orléans 2, France.
Zinc and copper are essential cations involved in numerous biological processes, and variations in their concentrations can cause diseases such as neurodegenerative diseases, diabetes and cancers. Hence, detection and quantification of these cations are of utmost importance for the early diagnosis of disease. Magnetic resonance imaging (MRI) responsive contrast agents (mainly Lanthanide(+III) complexes), relying on a change in the state of the MRI active part upon interaction with the cation of interest, e.
View Article and Find Full Text PDF