Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein--MBP--and proteolipid protein--PLP--(respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754901PMC
http://dx.doi.org/10.1038/srep21563DOI Listing

Publication Analysis

Top Keywords

oligodendrocyte differentiation
12
differentiation maturation
12
brain-compliant substrates
8
differentiation
6
maturation
5
modulation oligodendrocyte
4
maturation combined
4
combined biochemical
4
biochemical mechanical
4
mechanical cues
4

Similar Publications

Nonsense-mediated mRNA decay (NMD) is a conserved RNA surveillance mechanism that degrades transcripts with premature termination codons (PTCs) and finetunes gene expression by targeting RNA transcripts with other NMD inducing features. This study demonstrates that conditional knockout of , a key NMD component, in oligodendrocyte lineage cells disrupts the degradation of PTC-containing transcripts, including aberrant variants of the RNA-binding protein The loss of SMG5 in both sexes of mice impaired oligodendrocyte differentiation, reduced myelin gene expression, and led to thinner myelin sheaths and compromised motor function in mice. Mechanistically, HNRNPL was shown to regulate the alternative splicing of myelin-associated genes and , and promote oligodendrocyte differentiation.

View Article and Find Full Text PDF

Dynamic Interaction of Oligodendrocyte Precursor Cells with Other Cell Types in the Central Nervous System.

Neurochem Int

September 2025

Department of Neurobiology, College of Basic Medicine, Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai 200433, China. Electronic address:

Traditionally, oligodendrocyte precursor cells (OPCs) were primarily regarded for their differentiation potential to mature oligodendrocytes that ensheath central nervous system (CNS) axons through myelin formation. Recent breakthroughs in single-cell sequencing and in vivo imaging technologies have revolutionized our understanding, revealing that OPCs engage in extensive dynamic interactions with diverse CNS cell populations during neurodevelopment, tissue homeostasis maintenance, and pathological microenvironment remodeling. Notably, while OPCs exhibit relatively conserved phenotypic signatures, their functional plasticity within heterogeneous microenvironments demonstrates significant spatial specificity and disease-context dependence.

View Article and Find Full Text PDF

In the adult brain, neural stem cells (NSCs) constitutively generate new neurons in specific neurogenic domains. Recent research has unveiled reactive neurogenesis, whereby brain injury triggers NSC activation, enhancing their differentiation potential and guiding progeny to injured areas. Our study provides evidence of alternative migration pathways for newborn neurons in the mouse subcortical forebrain, revealed by administration of a chemotherapeutic agent.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the central nervous system (CNS) and is most often clinically presented in a relapsing form. Within MS lesions, oligodendrocyte progenitor cells (OPCs) differentiate into mature myelinating oligodendrocytes and mediate repair. A further understanding of the molecular mechanisms responsible for OPC differentiation will undoubtedly influence the direction of future treatments in MS.

View Article and Find Full Text PDF