98%
921
2 minutes
20
Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746371 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2015.12.013 | DOI Listing |
Biomed Environ Sci
August 2025
Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Henan Provincial People's Hospital Heart Center, Zhengzhou 451464, Henan, China.
Hypertrophic cardiomyopathy (HCM) is a major contributor to cardiovascular diseases (CVD), the leading cause of death globally. HCM can precipitate heart failure (HF) by causing the cardiac tissue to weaken and stretch, thereby impairing its pumping efficiency. Moreover, HCM increases the risk of atrial fibrillation, which in turn elevates the likelihood of thrombus formation and stroke.
View Article and Find Full Text PDFElife
September 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, United States.
The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.
View Article and Find Full Text PDFCancer Invest
September 2025
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
Given the limited diagnostic technologies and treatment options available for lung adenocarcinoma (LUAD) patients with liver metastases, it is crucial to identify potential genomic signatures associated with liver metastasis, which could significantly contribute to the development of improved diagnostic tools and treatment strategies for LUAD patients with liver metastases. In this study, we identified specific genetic alterations in tumor samples with liver metastases by targeted capture sequencing. The results showed that the significantly higher mutation frequencies of , and in LUAD patients with liver metastases and and mutations found in both tumor tissues and plasma samples from patients with liver metastases.
View Article and Find Full Text PDFBiomed Rep
November 2025
Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan.
Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Pathology, Institute of Clinical Pathology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Despite the generally favorable prognosis of differentiated thyroid carcinoma (DTC) following surgery and radioactive iodine (RAI) therapy, approximately 10% of cases eventually develop resistance to RAI. This condition, known as radioiodine-refractory differentiated thyroid carcinoma (RAIR-DTC), is associated with a poor prognosis, with a 10-year survival rate of only 10% from the time of metastasis detection. The limited availability of safe and effective alternative treatments poses a significant challenge to clinical management.
View Article and Find Full Text PDF