Identification of new SUMO activating enzyme 1 inhibitors using virtual screening and scaffold hopping.

Bioorg Med Chem Lett

Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan. Electronic address:

Published: February 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sumoylation involves the enzymatic conjugation of small ubiquitin-like modifier (SUMO) protein to their substrate proteins. Sumoylation is not only crucial for maintaining normal cellular physiology but also implicated in the development of several diseases including cancer. SUMO E1, the first protein in sumoylation pathway is of particular significance due to its confirmed role in tumorogenesis. However, notwithstanding its role as potential drug target, only a few small molecule inhibitors of SUMO E1 have been identified. Here, we report the identification of pyrazole and thiazole urea containing compounds as inhibitors of SUMO E1. We have utilized 3D-shape matching, electrostatic potential similarity evaluations and molecular docking to scaffold hop from previously known aryl urea scaffold with SUMO E1 activity to thiazole and pyrazole urea based scaffolds. These two classes of compounds were found to have moderate SUMO E1 inhibitory activity and can be used as starting points for the development of highly potent lead compounds against cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2016.01.030DOI Listing

Publication Analysis

Top Keywords

sumo protein
8
inhibitors sumo
8
sumo
6
identification sumo
4
sumo activating
4
activating enzyme
4
enzyme inhibitors
4
inhibitors virtual
4
virtual screening
4
screening scaffold
4

Similar Publications

Japanese encephalitis virus (JEV) is a significant flavivirus that poses a threat to public health, as it induces encephalitis in humans and reproductive disorders in sows. We have recently identified that zinc finger protein 33B (ZNF33B) is required for JEV infection by CRISPR-based functional genomic screening, yet the precise functions and mechanisms are not fully comprehended. In this study, ZNF33B was found to be involved in JEV infection, wherein it bound with JEV RNA to enhance its stability during replication.

View Article and Find Full Text PDF

Many cancers use an alternative lengthening of telomeres (ALT) pathway for telomere maintenance. ALT telomeric DNA synthesis occurs in ALT-associated PML bodies (APBs). However, the mechanisms by which APBs form are not well understood.

View Article and Find Full Text PDF

Chemotherapy is the leading treatment for acute lymphoblastic leukemia (ALL). However, many ALL patients eventually develop relapses, the treatment of which remains a major challenge due to their chemoresistance phenotype. As a step towards this end, we here uncovered that relapsed ALL specimens exhibit a significantly lower expression of STAT6 but not of other STATs, when compared with their paired diagnosis specimens.

View Article and Find Full Text PDF

The developmental transcription factor grainyhead-like 2 (GRHL2) has been attributed both tumor-suppressive and pro-tumorigenic functions in a large variety of human cancers. Despite its fundamental role in cancer development and progression, mechanisms modulating expression or activity of GRHL2 in cancer cells still remain elusive. We identified several components of the SUMOylation machinery as candidate GRHL2 interactors using a yeast two-hybrid screening approach and a single major GRHL2 SUMOylation site at lysine residue 159.

View Article and Find Full Text PDF

Identification and confirmation of SUMOylation-modified proteins in Giardia trophozoites.

Parasites Hosts Dis

August 2025

Department of Tropical Medicine, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.

Posttranslational modification by the small ubiquitin-related modifier (SUMO) is one of the crucial cellular processes in Giardia lamblia, a protozoan pathogen. In this study, 5 candidate SUMO substrate proteins of G. lamblia trophozoites were chosen based on their enrichment through affinity chromatography using a SUMO-interaction motif: never in mitosis A-related kinase (NEK), aminoacyl-histidine dipeptidase (AHD), protein disulfide isomerase 2 (PDI2), alcohol dehydrogenase 3, and ornithine carbamoyltransferase.

View Article and Find Full Text PDF