98%
921
2 minutes
20
Respiratory syncytial virus (RSV) consists of fusion (F), glyco (G), and small hydrophobic (SH) proteins as envelope proteins, and infects through cell fusion. F protein is expressed on the surface of infected cells, and induces cell fusion. In the present report, expression plasmids of the F, G and SH proteins were constructed and cell fusion activity was investigated under T7 RNA polymerase. F protein alone induced cell fusion at a lower concentration than previously reported, and co-expression of F and SH proteins induced cell fusion more efficiently than F protein alone. Palivizumab is the only prophylactic agent against RSV infection. Palivizumab-resistant strains having mutations of the F protein of K272E and S275F were reported. These mutations were introduced into an F-expression plasmid, and exhibited no inhibition of cell fusion with palivizumab. Among the RSV F protein mutants, N276S has been reported to have partial resistance against palivizumab, but the F expression plasmid with the N276S mutation showed a reduction in cell fusion in the presence of palivizumab, showing no resistance to palivizumab. The present expression system was useful for investigating the mechanisms of RSV cell fusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2016.01.003 | DOI Listing |
Nat Biotechnol
September 2025
Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
Targeted protein degraders hold potential as therapeutic agents to target conventionally 'undruggable' proteins. Here, we develop a high-throughput screen, DEath FUSion Escaper (DEFUSE), to identify small-molecule protein degraders. By conjugating the protein of interest to a fast-acting triggerable death protein, this approach translates target protein degradation into a cell survival phenotype to illustrate the presence of degraders.
View Article and Find Full Text PDFLeukemia
September 2025
I.R.C.C.S Santa Lucia Foundation, Via del Fosso di Fiorano, Rome, Italy.
At present there is no metabolic characterization of acute promyelocytic leukemia (APL). Pathognomonic of APL, PML::RARα fusion protein rewires metabolic pathways to feed anabolic tumor cell's growth. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO)-based therapies render APL the most curable subtype of AML, yet approximately 1% of cases are resistant and 5% relapse.
View Article and Find Full Text PDFSci Bull (Beijing)
August 2025
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen Univ
Increased chromosomal instability impairs oocyte quality, contributing to female reproductive aging. The telomeric DNA damage response (DDR) is essential for genomic stability; however, how oocytes respond to telomeric damage remains elusive. Here, we observed that aged human germinal vesicle (GV) oocytes accumulated telomeric DNA damage.
View Article and Find Full Text PDFCell Signal
September 2025
Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Engin
Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.
View Article and Find Full Text PDFPathol Res Pract
September 2025
Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China. Electronic address:
Background: Dermal clear cell sarcoma (DCCS) is a rare malignant mesenchymal neoplasm. Owing to the overlaps in its morphological and immunophenotypic profiles with a broad spectrum of tumors exhibiting melanocytic differentiation, it is frequently misdiagnosed as other tumor entities in clinical practice. By systematically analyzing the clinicopathological characteristics, immunophenotypic features, and molecular biological properties of DCCS, this study intends to further enhance pathologists' understanding of this disease and provide a valuable reference for its accurate diagnosis.
View Article and Find Full Text PDF