98%
921
2 minutes
20
Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this service, and is used in managing eutrophic waters. Studies show that they are affected by changes in pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. edulis biomass of up to 50% by 2100. Growth reduction will negatively affect the filtering capacity of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the current knowledge of the resultant effect of ocean acidification on this key service. We show that the effects of ocean acidification on waste bioremediation could be a major issue and pave the way for empirical studies of the topic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2015.12.040 | DOI Listing |
Mar Environ Res
August 2025
Hellenic Centre for Marine Research, Institute of Oceanography, Heraklion, Greece.
Ocean acidification (OA) due to anthropogenic CO2 emissions has significantly altered ocean chemistry since the industrial era. Ocean alkalinity enhancement (OAE) is an innovative strategy to mitigate excess CO, with ocean liming (OL) serving as a potential carbon dioxide removal (CDR) method, through the spreading of Ca(OH) (slaked lime) at the ocean surface. This study examined the ecological effects of OL on a natural zooplankton community from the ultraoligotrophic Eastern Mediterranean Sea during a 14-day mesocosm experiment conducted in spring-summer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.
Bivalve farming, a vital component of global aquaculture, has been proposed as a potential marine carbon dioxide removal (mCDR) strategy, yet its role remains contentious. Using field mesocosms, we demonstrate that oyster filter-feeding enhances mCDR by accelerating the formation of particulate and dissolved organic carbon in the water column and promoting organic carbon deposition in sediments. This process shifts the water column toward a more autotrophic and alkaline state, effectively sequestering CO from the atmosphere.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118, USA.
Ocean acidification poses a threat to coral skeleton formation via reductions in the saturation state of aragonite (Ω) in seawater. Given that corals precipitate their skeletons from a calcifying fluid supplied by seawater, reductions in seawater Ω should, in theory, confound calcification. Here, we reconstruct up to 200 years of coral calcifying fluid Ω, using Raman spectroscopy techniques, at approximately monthly resolution in two sp.
View Article and Find Full Text PDFMar Environ Res
August 2025
ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
Marine ecosystems are facing escalating chronic and acute environmental stressors, yet our understanding of how multiple stressors influence individuals is limited. Here, we investigated how projected ocean warming (+1.5 °C) during grandparental (F) and parental (F) generations of the spiny chromis damselfish (Acanthochromis polyacanthus), influences the sensitivity of F juveniles to ocean warming (present-day vs +1.
View Article and Find Full Text PDFMar Environ Res
August 2025
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile.
In the perspective of a future ocean, climate change can alter upwelling systems globally. Along the Chilean coast, upwelling becomes intensified, leading to cool temperatures and low pH, which can affect common and widespread calcifying seaweed species such as Corallina officinalis. We measured physiological, biomineralogical, and palatability responses in two distinct populations originating from contrasting upwelling regimes, one from an upwelling area and the other from an upwelling shadow, by exposing them to current and future upwelling conditions.
View Article and Find Full Text PDF