98%
921
2 minutes
20
Continuous-flow (dynamic) leaching in a rotating coiled column has been applied to studies on the mobility of Zn, Cd, Cu, Pb, Ni, Sb, As, S, and other potentially toxic elements in atmospherically deposited dust samples collected near a large copper smelter (Chelyabinsk region, Russia). Water and simulated "acid rain" (pH 4) were used as eluents. The technique enables not only the fast and efficient leaching of elements but as well time-resolved studies on the mobilization of heavy metals, sulphur, and arsenic in environmentally relevant forms to be made. It is shown that up to 1.5, 4.1, 1.9, 11.1, and 46.1% of Pb, As, Cu, Zn, and S, correspondingly, can be easily mobilized by water. Taking into consideration that the total concentrations of these elements in the samples under investigation are surprisingly high and vary in the range from 2.7 g/kg (for arsenic) to 15.5 g/kg (for sulphur), the environmental impact of the dust may be dramatic. The simulated acid rain results in somewhat higher recoveries of elements, except Cu and Pb. The proposed approach and the data obtained can very useful for the risk assessment related to the mobility of potentially toxic elements and their inclusion in the biogeochemical cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2015.11.124 | DOI Listing |
An Acad Bras Cienc
September 2025
Federal University of Minas Gerais, Department of Sanitary and Environmental Engineering, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-010 Belo Horizonte, MG, Brazil.
Micro- and nanoplastics (MNPs) are emerging contaminants increasingly recognized for their environmental and health implications. While surface water systems have been extensively studied, the presence, behavior, and impacts of MNPs in groundwater remain underexplored, despite its critical role as water source worldwide. The findings in this review highlight that agricultural activities, particularly plastic mulches, pesticides containers, fertilizer bags, greenhouses, are major sources of MNP.
View Article and Find Full Text PDFPLoS One
September 2025
Departamento de Biología, Escuela de Ciencias e Ingeniería, Universidad del Rosario, Bogotá, Colombia.
Honey bees (Apis mellifera) are essential pollinators threatened by sublethal effects of pesticides such as imidacloprid, a widely used neonicotinoid that disrupts the central nervous system. However, many of the systemic effects are poorly understood, especially on the physiological homeostasis of the honey bee. We evaluated the effects of oral administration of imidacloprid and the flavonol rutin on the properties of extracellular fluid (ECF) in Apis mellifera.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Mass Spectrometry Based Converging Research Institute, Daegu 41566, Republic of Korea. Electronic address:
Polyethylene terephthalate (PET) is one of the most widely used plastics, particularly in packaging and textiles. Although PET is widely used in consumer products, only 10-28 % is recycled. Most PET waste is not properly managed.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea; Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea. Electronic address:
Arsenic (As) contamination from abandoned gold mines threatens adjacent ecosystems through leaching and erosion. This study investigated how soil physicochemical properties regulate As binding forms upon initial contamination and associated ecotoxicological effects on soil invertebrates. Forest soils (0-10 cm depth) were collected from four mountainous sites across Korea with varying physicochemical properties.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China. Electronic address:
Selenite contamination poses a significant environmental risk due to its high toxicity, mobility, and bioavailability, and further threatens ecological stability and human health via biological accumulation in trophic chains. Microbial transformation of selenite into selenium nanoparticles (SeNPs) represents a promising and sustainable bioremediation strategy. However, the underlying mechanisms in environmentally prevalent yeasts remain largely uncharacterized.
View Article and Find Full Text PDF