Statistical estimation of T1 relaxation times using conventional magnetic resonance imaging.

Neuroimage

Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quantitative T1 maps estimate T1 relaxation times and can be used to assess diffuse tissue abnormalities within normal-appearing tissue. T1 maps are popular for studying the progression and treatment of multiple sclerosis (MS). However, their inclusion in standard imaging protocols remains limited due to the additional scanning time and expert calibration required and susceptibility to bias and noise. Here, we propose a new method of estimating T1 maps using four conventional MR images, which are intensity-normalized using cerebellar gray matter as a reference tissue and related to T1 using a smooth regression model. Using cross-validation, we generate statistical T1 maps for 61 subjects with MS. The statistical maps are less noisy than the acquired maps and show similar reproducibility. Tests of group differences in normal-appearing white matter across MS subtypes give similar results using both methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889526PMC
http://dx.doi.org/10.1016/j.neuroimage.2015.12.037DOI Listing

Publication Analysis

Top Keywords

relaxation times
8
statistical maps
8
maps
6
statistical estimation
4
estimation relaxation
4
times conventional
4
conventional magnetic
4
magnetic resonance
4
resonance imaging
4
imaging quantitative
4

Similar Publications

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Adjusting interlayer interactions and proton-conduction pathways of 2D covalent organic frameworks through the rotaxane structures.

Natl Sci Rev

September 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.

Covalent organic frameworks (COFs) have great potential as versatile platforms for proton conduction. However, the commonly applied 2D COFs that are easy to design and synthesize have only 1D channels for proton conduction, limiting the formation of continuous hydrogen bonds due to the anisotropy between their crystalline grains. Herein, we report a strategy to construct 3D channels in 2D COFs by using rotaxane structures and eliminate the strong interlayer π-π interactions, facilitating the formation of smooth 3D proton-transfer pathways during guest doping.

View Article and Find Full Text PDF

Background: Cognitive impairment and psychological complaints are among the most common consequences for patients suffering from Post-Covid-19 condition (PCC). As there are limited training options available, this study examined a longitudinal tablet-based training program addressing cognitive and psychological symptoms.

Methods: Forty individuals aged between 36 and 71 years ( = 49.

View Article and Find Full Text PDF

Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.

View Article and Find Full Text PDF

The electron-deficient oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has recently emerged as a promising visible-light photoredox catalyst. However, its excited-state behavior remains poorly understood. Here, we investigate the ultrafast dynamics of photoexcited DDQ in acetonitrile using transient electronic and infrared absorption spectroscopy, supported by quantum chemical calculations.

View Article and Find Full Text PDF