Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A simple, rapid, and sensitive immunoassay has been developed based on antigen-mediated aggregation of gold nanoparticles (AuNP) and surface-enhanced Raman spectroscopy (SERS). Central to this platform is the extrinsic Raman label (ERL), which consists of a gold nanoparticle modified with a mixed monolayer of a Raman active molecule and an antibody. ERLs are mixed with sample, and antigen induces the aggregation of the ERLs. A membrane filter is then used to isolate and concentrate the ERL aggregates for SERS analysis. Preliminary work to establish proof-of-principle of the platform technology utilized mouse IgG as a model antigen. The effects of membrane pore diameter and AuNP size on the analytical performance of the assay were systematically investigated, and it was determined that a pore diameter of 200 nm and AuNP diameter of 80 nm provide maximum sensitivity while minimizing signal from blank samples. Optimization of the assay provided a detection limit of 1.9 ng/mL, 20-fold better than the detection limit achieved by an ELISA employing the same antibody-antigen system. Furthermore, this assay required only 60 min compared to 24h for the ELISA. To validate this assay, mouse serum was directly analyzed to accurately quantify IgG. Collectively, these results demonstrate the potential advantages of this technology over current diagnostic tests for protein biomarkers with respect to time, simplicity, and detection limits. Thus, this approach provides a framework for prospective development of new and more powerful tools that can be designed for point-of-care diagnostic or point-of-need detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2015.08.065DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
pore diameter
8
detection limit
8
sers immunoassay
4
immunoassay based
4
based capture
4
capture concentration
4
concentration antigen-assembled
4
antigen-assembled gold
4
nanoparticles simple
4

Similar Publications

Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

Colloidal gold technology in viral diagnostics: Recent innovations, clinical applications, and future perspectives.

Virology

September 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:

Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.

View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) are widely used in diverse technological and scientific applications due to their unique optical and catalytic properties. These properties are strongly influenced by the size, shape, composition, and/or concentration of the NPs, which in turn depend on the synthesis conditions. Therefore, the development of simple, cost-effective, and reliable analytical methods for their characterization is essential.

View Article and Find Full Text PDF

The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.

View Article and Find Full Text PDF