Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants.

Plant Pathol J

Department of Chemistry, College of Natural Science, Dankook University, Cheonan 330-714, Korea.

Published: December 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We developed a loop-mediated isothermal amplification (LAMP) method to rapidly diagnose Wheat streak mosaic virus (WSMV) during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677754PMC
http://dx.doi.org/10.5423/PPJ.NT.06.2015.0110DOI Listing

Publication Analysis

Top Keywords

loop-mediated isothermal
8
isothermal amplification
8
wheat streak
8
streak mosaic
8
mosaic virus
8
lamp method
8
wsmv quarantine
8
quarantine inspections
8
plant quarantine
8
quarantine
5

Similar Publications

Lumpy skin disease (LSD) is a viral disease that affects livestock and is caused by the lumpy skin disease virus (LSDV). An outbreak of LSD in any country can lead to acute economic damage for livestock owners. The significance of prompt and accurate diagnosis in managing this viral disease cannot be overstated.

View Article and Find Full Text PDF

Grape white rot, caused by Coniella vitis, is a devastating disease that affects grape production in China and worldwide, resulting in substantial yield and quality losses. Early and accurate detection of C. vitis is critical for effective disease management.

View Article and Find Full Text PDF

Curable sexually transmitted infections (STIs) caused by the bacteria (CT) and (NG) are widespread globally. These infections are particularly dangerous for female patients, causing pelvic inflammatory disease, infertility, and increased risk of HIV acquisition. Vaginal self-swab sampling can improve access to STI screening but is still subject to treatment delays due to centralized processing.

View Article and Find Full Text PDF

A Novel Loop-Mediated Isothermal Amplification (LAMP) Assay for Detecting Salmonella Ser. Typhimurium in Egg Products.

J AOAC Int

September 2025

Office of Laboratory Operations and Applied Science, Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland.

Background: As a leading cause of foodborne illness worldwide, detection of Salmonella enterica subsp. enterica serovar Typhimurium is essential for food safety and public health.

Objective: This study aimed to develop a loop-mediated isothermal amplification (LAMP) assay for the rapid and sensitive detection of Salmonella ser.

View Article and Find Full Text PDF

Background: The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA), particularly due to the presence of the mecA gene, emphasizes the need for decentralized, rapid, and accurate molecular diagnostics. While qPCR remains the gold standard method, its dependence on expensive equipment and centralized labs limits accessibility in field or point-of-care (POC) settings. To address this limitation, we developed an Electrochemical Loop-Mediated Isothermal Amplification (E-LAMP) platform for rapid, low-cost, and highly sensitive detection of the mecA gene, using 3D-printed electrodes and a smartphone-controlled potentiostat.

View Article and Find Full Text PDF