GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells.

Sci Rep

Centre for Human Development, Stem Cells &Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.

Published: December 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study therefore aimed to investigate the regulation of glucose metabolism in hESCs and whether this might impact OCT4 expression. In contrast to the glucose transporter GLUT1, GLUT3 was regulated by environmental oxygen and localised to hESC membranes. Silencing GLUT3 caused a reduction in glucose uptake and lactate production as well as OCT4 expression. GLUT3 and OCT4 expression were correlated suggesting that hESC self-renewal is regulated by the rate of glucose uptake. Surprisingly, PKM2, a rate limiting enzyme of glycolysis displayed a nuclear localisation in hESCs and silencing PKM2 did not alter glucose metabolism suggesting a role other than as a glycolytic enzyme. PKM2 expression was increased in hESCs cultured at 5% oxygen compared to 20% oxygen and silencing PKM2 reduced OCT4 expression highlighting a transcriptional role for PKM2 in hESCs. Together, these data demonstrate two separate mechanisms by which genes regulating glucose uptake and metabolism are involved in the hypoxic support of pluripotency in hESCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671001PMC
http://dx.doi.org/10.1038/srep17500DOI Listing

Publication Analysis

Top Keywords

oct4 expression
20
glucose uptake
12
human embryonic
8
embryonic stem
8
stem cells
8
hescs cultured
8
glucose metabolism
8
silencing pkm2
8
hescs
7
expression
6

Similar Publications

Adverse intrauterine environments, such as hyperglycemia, impair sexual reproduction and species continuity, yet the underlying mechanisms remain poorly understood. In this study, we demonstrated that intrauterine hyperglycemia significantly disrupted primordial germ cell (PGC) development, especially in female offspring, thus reducing fertility. Using Oct4-EGFP transgenic mice with intrauterine hyperglycemia exposure, we revealed that hyperglycemia compromised sexually specific chromatin accessibility and DNA methylation reprogramming during PGC development.

View Article and Find Full Text PDF

Initially, pseudogenes were considered to be "junk DNA", and their biological role was unclear. However, some of the pseudogenes are engaged in the process of cancerogenesis and perform essential functions in competing for endogenous ribonucleic acid (ceRNA) networks and competing for RNA binding proteins (RBPs). They either positively or negatively regulate gene expression and act as suppressive and oncogenic transcripts.

View Article and Find Full Text PDF

The three-dimensional (3D) culture system has emerged as an indispensable platform for modulating stem cell function in biomedicine, drug screening, and cell therapy. Despite a few studies confirming the functionality of 3D culture, the molecular factors underlying this process remain obscure. Here, we have utilized a hanging drop method to generate 3D spheroid-derived mesenchymal stem cells (3D MSCs) and compared them to conventionally 2D-cultured MSCs.

View Article and Find Full Text PDF

ER stress disrupts MFN2-related mitophagy via HRD1-PINK1/ parkin axis in bovine embryos.

Theriogenology

August 2025

College of Animal Sciences, Jilin University, Changchun, 130062, Jilin Province, China. Electronic address:

The endoplasmic reticulum and mitochondria are interconnected through the MAM structure, and mitochondrial fusion protein 2 (MFN2) is a key regulatory factor. In this study, tunicamycin (TM) was used to induce endoplasmic reticulum stress in bovine embryos to explore its effects on MFN2 expression, mitochondrial function and mitochondrial autophagy. The results showed that TM treatment significantly reduced the blastocyst rate and proliferation capacity of embryos, inhibited the expression of pluripotency genes (SOX2, CDX2, OCT4), and upregulated key proteins of the UPR pathway.

View Article and Find Full Text PDF

Generation of an iPSC line (CHSUi001-A) from a patient with JAK3 gene mutations.

Stem Cell Res

September 2025

Department of Rheumatology and Immunology, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong Province, China. Electronic address:

This study describes the establishment of an induced pluripotent stem cell (iPSC) line derived from a patient harboring two heterozygous JAK3 gene mutations: c.1914G > T and c.1048C > T.

View Article and Find Full Text PDF