Theriogenology
August 2025
The endoplasmic reticulum and mitochondria are interconnected through the MAM structure, and mitochondrial fusion protein 2 (MFN2) is a key regulatory factor. In this study, tunicamycin (TM) was used to induce endoplasmic reticulum stress in bovine embryos to explore its effects on MFN2 expression, mitochondrial function and mitochondrial autophagy. The results showed that TM treatment significantly reduced the blastocyst rate and proliferation capacity of embryos, inhibited the expression of pluripotency genes (SOX2, CDX2, OCT4), and upregulated key proteins of the UPR pathway.
View Article and Find Full Text PDFAntioxidants (Basel)
July 2025
Oxidative stress poses a challenge to in vitro embryo culture. As a flavonoid, galangin (GAL) has been shown to have antioxidant effects, but the effect and antioxidant capacity of GAL in the in vitro development of porcine parthenogenetic embryos are still unknown. In this study, we demonstrated that 1 µM GAL significantly increased the blastocyst rate, decreased the accumulation of intracellular reactive oxygen species (ROS), increased the glutathione (GSH) level, and enhanced mitochondrial function in early porcine embryos.
View Article and Find Full Text PDFIn vitro production techniques for bovine embryos can improve reproductive efficiency and expand quality breeding stock, but lipid metabolism disturbances during in vitro embryo culture can decrease embryo quality. Salidroside (SAL) is a glycoside extracted from the rhizome of the medicinal plant Rhodiola rosea that has antioxidant, antiaging, anti-inflammatory, and lipid metabolism-regulating effects. This study demonstrated that the addition of SAL to the culture medium of bovine embryos during in vitro culture increased the blastocyst rate and number of blastocyst cells and improved bovine blastocyst totipotency and proliferation.
View Article and Find Full Text PDFAnim Reprod Sci
February 2025
This study investigated the role of mitochondrial fusion protein-2 (MFN2) in bovine embryonic development and its relationship with endoplasmic reticulum (ER) stress, aiming to increase the efficiency of in vitro embryo culture. Western blot analysis revealed that MFN2 expression peaked at the 2-cell stage, decreased at the 4-cell stage, and gradually increased from the 6-8-cell stage to the blastocyst stage. Inhibiting MFN2 at the zygote stage reduced blastocyst formation and proliferation, and this damage was partially reversed by the ER stress protective agent TUDCA.
View Article and Find Full Text PDFPHD proteins are an important class of transcription factors (TFs) that are widely distributed in eukaryotes and play crucial roles in many aspects of plant growth, development and response to stress. We identified a transcription factor, ThPHD5, from the PHD family in Tamarix hispida based on its potential involvement in abiotic stress response processes. In this study, the salt tolerance function of ThPHD5 from T.
View Article and Find Full Text PDFBacterial strain Y-6, isolated from a landfill site in Yiwu, PR China, was characterized using a polyphasic taxonomy approach. Cells were Gram-stain-negative, aerobic, rod-shaped, motile by means of a single polar flagellum and formed pale beige colonies. Strain Y-6 grew at 4-40 °C (optimal at 30-37 °C), pH 6.
View Article and Find Full Text PDFA highly efficient synthetic method for the preparation of 2-aminobenzothiazoles starting from arylthioureas has been reported. By using a nickel catalyst, arylthioureas undergo intramolecular oxidative C-H bond functionalization, giving the desired 2-aminobenzothiazoles in good to excellent yields. This protocol features an inexpensive catalyst, low catalyst loading, mild reaction conditions, a short reaction time, and good to excellent yields, and it can be scaled up easily to a gram scale with almost no yields decreasing.
View Article and Find Full Text PDF