Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder characterized by fluctuating weakness of voluntary skeletal muscles. The cause of autoimmune response is unknown and only symptomatic therapies for MG are currently available. Pharmacological correction of synaptic failure underlying MG, involves partial inhibition acetyl- and butyrylcholinesterase. Effectiveness of cholinesterase inhibitors in the symptomatic treatment of MG is based on their ability to potentiate the effects of acetylcholine by decreasing the rate of its enzymatic hydrolysis at neuromuscular junctions. Several new inhibitors of AChE were tested in animal model of MG and may be considered as valuable candidates for the treatment of pathological muscle weakness syndromes. In this study, we have investigated mechanisms of ChE inhibition by one of the most active 6-methyluracil derivatives (C547), as well as the possible benefits of using this compound for MG treatment compared to traditionally used pyridostigmine bromide.It was experimentally shown that C547 is a «pseudo-irreversible» slow-binding inhibitor of human AChE. Human BChE is reversibly inhibited by C547 with an affinity about 4 orders of magnitude lower than that of human AChE. Slow-binding inhibition of AChE leads to a lasting (over 24 hours) effect on the symptoms of muscle weakness in animal model of MG after a single administration of C547.

Objective: The aim of the present molecular modeling study was to reveal mechanism of AChE inhibition by C547 and elucidate its apparent «pseudo-irreversibility».

Methods: Two principle methods used in the present study were molecular docking and molecular dynamics (MD). Molecular docking was performed with Autodock 4.2.6 software, Lamarckian Genetic Algorithm to obtain structure of protein inhibitor complexes and Local Search for MD snapshots to compare relative binding affinity. For MD simulations NAMD 2.10 software with Charrm 36 force field was used, for the ligand C547 Charmm General Force Field was used, and missing parameters were obtained with quantum mechanical calculations. Unconstrained MD, steered MD (SMD) and free energy calculations with adaptive biasing force were performed.

Results: During unconstrained MD, C547 very rapidly binded to the peripheral anionic site (PAS) of AChE. To pass the bottleneck, application of the external force was required (SMD). Both SMD modelling and free energy calculation revealed that after crossing the AChE bottleneck, C547 falls into very favorable position. At the same time the rupture of interactions as well as overcoming the bottleneck gates in the course of pulling out procedure requires application of much higher force than during the pulling-in process. This difference between binding and dissociating processes explains apparent «pseudo-irreversibility» of the inhibitor.

Conclusions: These findings are in good agreement with kinetics study showing that C-547 is a slow-binding inhibitor of type B, i.e. after rapid initial binding of inhibitor, the enzyme-inhibitor complex undergoes an isomerization step. Position obtained by SMD is in good agreement with X-ray data obtained by F. Nachon, IBS, France.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JRS-150696DOI Listing

Publication Analysis

Top Keywords

slow-binding inhibitor
12
molecular modeling
8
animal model
8
muscle weakness
8
human ache
8
molecular docking
8
force field
8
free energy
8
good agreement
8
ache
7

Similar Publications

Slow binding modulation of paraoxonase 1 activity with terbium ions.

Chem Biol Interact

October 2025

University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000, Ljubljana, Slovenia. Electronic address:

Paraoxonase 1 (PON1) is a metalloenzyme that requires calcium ions at both catalytic and structural binding sites to hydrolyze the substrates. The enzyme is efficiently inhibited by several metal ions, especially transition metals, which tend to bind non-specifically to oxygen, nitrogen, and sulfur ligands of amino acid residues on the PON1 surface. In contrast, several lanthanide ions can specifically replace isomorphous Ca ions from many protein binding sites, making them among the most potent metal inhibitors of PON1.

View Article and Find Full Text PDF

Background: Roxb. (SGR), known as "tufuling" in China, is a medical and edible plant, which has anti-inflammatory, antibacterial and antineoplastic activity. SGR is extensively utilized in the remedy of gastroenteric disorders associated with infection.

View Article and Find Full Text PDF

4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are widely used as herbicides. However, the emergence of herbicide-resistant weeds necessitates the development of new herbicides with more diverse chemical structures. Therefore, we evaluated the herbicidal and HPPD inhibitory activities of iptriazopyrid, a novel azole carboxamide compound.

View Article and Find Full Text PDF

Temperature vaulting: A method for screening of slow- and tight-binding inhibitors that selectively target kinases in their non-native state.

Eur J Med Chem

October 2025

Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-Minowa, Kami

A polypeptide folds into its protein tertiary structure in the native state through a folding intermediate in the non-native state. The transition between these states is thermodynamically driven. A folding intermediate of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) autophosphorylates intramolecularly, whereas DYRK1A in the native state no longer catalyzes this reaction.

View Article and Find Full Text PDF

Ketol-acid reductoisomerase (KARI) is a target for the development of new biocidal agents. This is based on its essential role in branched chain amino acid biosynthesis in plants and microorganisms, and its absence in animals. The lack of success in developing KARI inhibitors as biocides may be because the inhibitors assessed to date compete directly with the substrate, 2-acetolactate (AL).

View Article and Find Full Text PDF