Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reverse transcription is the central defining feature of HIV-1 replication. We previously reported that the cellular eukaryotic elongation factor 1 (eEF1) complex associates with the HIV-1 reverse transcription complex (RTC) and the association is important for late steps of reverse transcription. Here we show that association between the eEF1 and RTC complexes occurs by a strong and direct interaction between the subunit eEF1A and reverse transcriptase (RT). Using biolayer interferometry and co-immunoprecipitation (co-IP) assays, we show that association between the eEF1 and RTC complexes occurs by a strong (KD ~3-4 nM) and direct interaction between eEF1A and reverse transcriptase (RT). Biolayer interferometry analysis of cell lysates with titrated levels of eEF1A indicates it is a predominant cellular RT binding protein. Both the RT thumb and connection domains are required for interaction with eEF1A. A single amino acid mutation, W252A, within the thumb domain impaired co-IP between eEF1A and RT, and also significantly reduced the efficiency of late reverse transcription and virus replication when incorporated into infectious HIV-1. Molecular modeling analysis indicated that interaction between W252 and L303 are important for RT structure, and their mutation to alanine did not impair heterodimerisation, but negatively impacted interaction with eEF1A. Didemnin B, which specifically binds eEF1A, potently inhibited HIV-1 reverse transcription by greater than 2 logs at subnanomolar concentrations, especially affecting reverse transcription late DNA synthesis. Analysis showed reduced levels of RTCs from HIV-1-infected HEK293T treated with didemnin B compared to untreated cells. Interestingly, HIV-1 with a W252A RT mutation was resistant to didemnin B negative effects showing that didemnin B affects HIV-1 by targeting the RT-eEF1A interaction. The combined evidence indicates a direct interaction between eEF1A and RT is crucial for HIV reverse transcription and replication, and the RT-eEF1A interaction is a potential drug target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666417PMC
http://dx.doi.org/10.1371/journal.ppat.1005289DOI Listing

Publication Analysis

Top Keywords

reverse transcription
32
interaction eef1a
20
hiv-1 reverse
12
direct interaction
12
reverse
10
eef1a
9
transcription
8
association eef1
8
eef1 rtc
8
rtc complexes
8

Similar Publications

PUM2 Lowers HDAC9 mRNA Stability to Improve Contrast-Induced Acute Kidney Injury through Attenuating Oxidative Stress and Promoting Autophagy.

Diabetes Metab J

September 2025

Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China.

Background: Contrast-induced acute kidney injury (CIAKI) is the third cause of hospital-acquired acute kidney injury and diabetes mellitus (DM) was identified as a risk factor for CIAKI. However, the molecular mechanism underlying DM-CIAKI remains unclear, which needs further investigation.

Methods: DM-CIAKI models of mice and cells were established.

View Article and Find Full Text PDF

First Report of in Bats and Ticks Collected from Bat Habitats.

Vector Borne Zoonotic Dis

September 2025

Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.

The zoonotic infectious disease, severe fever with thrombocytopenia syndrome (SFTS), caused by the SFTS virus (SFTSV), , was first identified in China in 2009 and reported in the Republic of Korea in 2013. The primary vector is the tick (.) , which is endemic to the Asia-Pacific region and has a wide range of hosts.

View Article and Find Full Text PDF

Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).

Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.

View Article and Find Full Text PDF

Replication-competent adenovirus reporters utilizing endogenous viral expression architecture.

J Virol

September 2025

Genome Regulation and Cell Signaling, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.

Unlabelled: Adenoviruses are double-stranded DNA viruses widely used as platforms for vaccines, oncolytics, and gene delivery. However, tools for studying adenoviral gene expression in real time during infection remain limited. Here, we describe a set of fluorescent and bioluminescent reporter viruses built using the modular AdenoBuilder reverse genetics system and informed by high-resolution maps of Ad5 transcription.

View Article and Find Full Text PDF

Kinases are activators of well‑known inflammatory cascades implicated in metabolic disorders, and abnormal activation of casein kinase II (CK2) is associated with several inflammatory disorders. However, thus far, its role in the low‑grade chronic inflammatory response known as 'metaflammation', which is a hallmark of obesity and type 2 diabetes, has not yet been elucidated. The present study aimed to evaluate the role of CK2 in diet‑induced metaflammation and the effects of the CK2 inhibitor 4,5,6,7‑tetrabromobenzotriazole (TBB) on a murine model fed a high‑fat‑high‑sugar (HFHS) diet.

View Article and Find Full Text PDF