98%
921
2 minutes
20
Background And Aims: Although Oryza sativa (rice) is one of the most important cereal crops, the mechanism by which sucrose, the major photosynthate, is loaded into its phloem is still a matter of debate. Current opinion holds that the phloem loading pathway in rice could involve either a symplasmic or an apoplasmic route. It was hypothesized, on the basis of a complementary body of evidence from arabidopsis, which is an apoplasmic loader, that the membrane specificity of proton pyrophosphatases (H(+)-PPases; OVPs) in the sieve element-companion cell (SE-CC) complexes of rice source leaves would support the existence of either of the aforementioned phloem loading mechanisms. Additionally, it was contended that the presence of sucrose synthase in the SE-CC complexes would be consistent with an apoplasmic sucrose loading route in rice.
Methods: Conventional chemical fixation methods were used for immunohistochemical localization of H(+)-PPases and sucrose synthase in rice and arabidopsis at the light microscopy level, while ultrastructural immunogold labelling of H(+)-PPases and sucrose synthase was performed on high-pressure frozen source leaves of rice.
Key Results: Using immunogold labelling, it was found that OVPs predominantly localize at the plasma membrane (PM) of the SE-CC complexes in rice source leaf minor veins, while in the root meristematic cells, OVPs preferentially localize at the vacuoles. The PM specificity of OPVs in the SE-CC complexes was deemed to support apoplasmic loading in the rice phloem. Further backing for this interpretation came from the sucrose synthase-specific immunogold labelling at the SE-CC complexes of rice source leaves.
Conclusion: These findings are consistent with the idea that, in the same way as in arabidopsis and a majority of grasses, sucrose is actively loaded into the SE-CC complexes of rice leaves using an apoplasmic step.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724047 | PMC |
http://dx.doi.org/10.1093/aob/mcv174 | DOI Listing |
Plant Cell Physiol
October 2022
National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Phloem unloading plays an important role in photoassimilate partitioning and grain yield improvements in cereal crops. The phloem unloading strategy and its effects on photoassimilate translocation and yield formation remain unclear in rice. In this study, plasmodesmata were observed at the interface between the sieve elements (SEs) and companion cells (CCs), and between the SE-CC complex and surrounding parenchyma cells (PCs) in phloem of the dorsal vascular bundle in developing caryopses.
View Article and Find Full Text PDFJ Exp Bot
September 2022
Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callahan NSW 2308, Australia.
In Arabidopsis, polarized deposition of wall ingrowths in phloem parenchyma (PP) transfer cells (TCs) occurs adjacent to cells of the sieve element/companion cell (SE/CC) complex. However, the spatial relationships between these different cell types in minor veins, where phloem loading occurs, are poorly understood. PP TC development and wall ingrowth localization were compared with those of other phloem cells in leaves of Col-0 and the transgenic lines AtSUC2::AtSTP9-GFP (green fluorescent protein) and AtSWEET11::AtSWEET11-GFP that identify CCs and PP cells, respectively.
View Article and Find Full Text PDFHortic Res
September 2021
AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France.
Transcriptomic changes at the cessation of sugar accumulation in the pericarp of Vitis vinifera were addressed on single berries re-synchronised according to their individual growth patterns. The net rates of water, sugars and K accumulation inferred from individual growth and solute concentration confirmed that these inflows stopped simultaneously in the ripe berry, while the small amount of malic acid remaining at this stage was still being oxidised at low rate. Re-synchronised individual berries displayed negligible variations in gene expression among triplicates.
View Article and Find Full Text PDFCommun Biol
April 2020
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
Front Plant Sci
March 2018
Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins -differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex.
View Article and Find Full Text PDF